Applying social psychology
Some reflections on how “quantitative” social psychology is and how this matters for its application to design and decision-making — especially in industries touched by the Internet.
In many ways, contemporary social psychology is dogmatically quantitative. Investigators run experiments, measure quantitative outcomes (even coding free responses to make them amenable to analysis), and use statistics to characterize the collected data. On the other hand, social psychology’s processes of stating and integrating its conclusions remain largely qualitative. Many hypotheses in social psychology state that some factor affects a process or outcome in one direction (i.e., “call” either beta > 0 or beta < 0). Reviews of research in social psychology often start with a simple effect and then note how many other variables moderate this effect. This is all quite fitting with the dominance of null-hypothesis significance testing (NHST) in much of psychology: rather than producing point estimates or confidence intervals for causal effects, it is enough to simply see how likely the observed data is given there there is no effect.1 Of course, there have been many efforts to change this. Many journals require reporting effect sizes. This is a good thing, but these effect sizes are rarely predicted by social psychological theory. Rather, they are reported to aid judgments of whether a finding is not only statistically significant but substantively or practically significant, and the theory predicts the direction of the effect. Not only is this process of reporting and combining results not quantitative in many ways, but it requires substantial inference from the particular settings of conducted experiments to the present settings. This actually helps to make sense of the practices described above: many social psychology experiments are conducted in conditions and with populations that are so different from those in which people would like to apply the resulting theories, that expecting consistency of effect sizes is implausible.2 This is not to say that these studies cannot tell us a good deal about how people will behave in many circumstances. It's just that figuring out what they predict and whether these predictions are reliable is a very messy, qualitative process. Thus, when it comes to making decisions -- about a policy, intervention, or service -- based on social-psychological research, this process is largely qualitative. Decision-makers can ask, which effects are in play? What is their direction? With interventions and measurement that are very likely different from the present case, how large were the effects?3
Sometimes this is the best that social science can provide. And such answers can be quite useful in design. The results of psychology experiments can often be very effective when used generatively. For example, designers can use taxonomies of persuasive strategies to dream up some ways of producing desired behavior change.
Nonetheless, I think all this can be contrasted with some alternative practices that are both more quantitative and require less of this uneasy generalization. First, social scientists can give much more attention to point estimates of parameters. While not without its (other) flaws, the economics literature on financial returns to education has aimed to provide, criticize, and refine estimates of just how much wages increase (on average) with more education.4
Second, researchers can avoid much of the messiest kinds of generalization altogether. Within the Internet industry, product optimization experiments are ubiquitous. Google, Yahoo, Facebook, Microsoft, and many others are running hundreds to thousands of simultaneous experiments with parts of their services. This greatly simplifies generalization: the exact intervention under consideration has just been tried with a random sample from the very population it will be applied to. If someone wants to tweak the intervention, just try it again before launching. This process still involves human judgment about how to react to these results.5 An even more extreme alternative is when machine learning is used to fine-tune, e.g., recommendations without direct involvement (or understanding) by humans.
So am I saying that social psychology — at least as an enterprise that is useful to designers and decision-makers — is going to be replaced by simple “bake-off” experiments and machine learning? Not quite. Unlike product managers at Google, many decision-makers don’t have the ability to cheaply test a proposed intervention on their population of interest.6 Even at Google, many changes (or new products) under consideration are too difficult to build to them all: one has to decide among an overabundance of options before the most directly applicable data could be available. This is consistent with my note above that social-psychological findings can make excellent inspiration during idea generation and early evaluation.
- To parrot Andrew Gelman, in social phenomena, everything affects everything else. There are no betas that are exactly zero. [↩]
- It's also often implausible that the direction of the effect must be preserved. [↩]
- Major figures in social psychology, such as Lee Ross, have worked on trying to better anticipate the effects of social interventions from theory. It isn’t easy. [↩]
- The diversity of the manipulations used by social psychologists ostensibly studying the same thing can make this more difficult. [↩]
- Generalization is not avoided. In particular, decision-makers often have to consider what would happen if an intervention tested with 1% of the population is launched for the whole population. There are all kinds of issues relating to peer influence, network effects, congestion, etc., here that don’t allow for simple extrapolation from the treatment effects identified by the experiment. Nonetheless, these challenges obviously apply to most research that aims to predict the effects of causes. [↩]
- However, Internet services play a more and more central role in many parts of our life, so this doesn’t just have to be limited to the Internet industry itself. [↩]
Ideas behind their time: formal causal inference?
Alex Tabarrok at Marginal Revolution blogs about how some ideas seem notably behind their time:
We are all familiar with ideas said to be ahead of their time, Babbage’s analytical engine and da Vinci’s helicopter are classic examples. We are also familiar with ideas “of their time,” ideas that were “in the air” and thus were often simultaneously discovered such as the telephone, calculus, evolution, and color photography. What is less commented on is the third possibility, ideas that could have been discovered much earlier but which were not, ideas behind their time.
In comparing ideas behind and ahead of their times, it’s worth considering the processes that identify them as such.
In the case of ideas ahead of their time, we rely on records and other evidence of their genesis (e.g., accounts of the use of flamethrowers at sea by the Byzantines ). Later users and re-discoverers of these ideas are then in a position to marvel at their early genesis. In trying to see whether some idea qualifies as ahead of its time, this early genesis, lack or use or underuse, followed by extensive use and development together serve as evidence for “ahead of its time” status.
On the other hand, in identifying ideas behind their time, it seems that we need different sorts of evidence. Taborrok uses the standard of whether their fruits could have been produced a long time earlier (“A lot of the papers in say experimental social psychology published today could have been written a thousand years ago so psychology is behind its time”). We need evidence that people in a previous time had all the intellectual resources to generate and see the use of the idea. Perhaps this makes identifying ideas behind their time harder or more contentious.
Y(X = x) and P(Y | do(x))
Perhaps formal causal inference — and some kind of corresponding new notation, such as Pearl’s do(x) operator or potential outcomes — is an idea behind its time.1 Judea Pearl’s account of the history of structural equation modeling seems to suggest just this: exactly what the early developers of path models (Wright, Haavelmo, Simon) needed was new notation that would have allowed them to distinguish what they were doing (making causal claims with their models) from what others were already doing (making statistical claims).2
In fact, in his recent talk at Stanford, Pearl suggested just this — that if the, say, the equality operator = had been replaced with some kind of assignment operator (say, :=), formal causal inference might have developed much earlier. We might be a lot further along in social science and applied evaluation of interventions if this had happened.
This example raises some questions about the criterion for ideas behind their time that “people in a previous time had all the intellectual resources to generate and see the use of the idea” (above). Pearl is a computer scientist by training and credits this background with his approach to causality as a problem of getting the formal language right — or moving between multiple formal languages. So we may owe this recent development to comfort with creating and evaluating the qualities of formal languages for practical purposes — a comfort found among computer scientists. Of course, e.g., philosophers and logicians also have been long comfortable with generating new formalisms. I think of Frege here.
So I’m not sure whether formal causal inference is an idea behind its time (or, if so, how far behind). But I’m glad we have it now.
- There is a “lively” debate about the relative value of these formalisms. For many of the dense causal models applicable to the social sciences (everything is potentially a confounder), potential outcomes seem like a good fit. But they can become awkward as the causal models get complex, with many exclusion restrictions (i.e. missing edges). [↩]
- See chapter 5 of Pearl, J. (2009). Causality: Models, Reasoning and Inference. 2nd Ed. Cambridge University Press. [↩]