Situational variation, attribution, and human-computer relationships
Mobile phones are gateways to our most important and enduring relationships with other people. But, like other communication technologies, the mobile phone is psychologically not only a medium: we also form enduring relationships with devices themselves and their associated software and services (Sundar 2004). While different than relationships with other people, these human–technology relationships are also importantly social relationships. People exhibit a host of automatic, social responses to interactive technologies by applying familiar social rules, categories, and norms that are otherwise used in interacting with people (Reeves and Nass 1996; Nass and Moon 2000).
These human–technology relationships develop and endure over time and through radical changes in the situation. In particular, mobile phones are near-constant companions. They take on roles of both medium for communication with other people and independent interaction partner through dynamic physical, social, and cultural environments and tasks. The global phenomenon of mobile phone use highlights both that relationships with people and technologies are influenced by variable context and that these devices are, in some ways, a constant in amidst these everyday changes.
Situational variation and attribution
Situational variation is important for how people understand and interact with mobile technology. This variation is an input to the processes by which people disentangle the internal (personal or device) and external (situational) causes of an social entity’s behavior (Fiedler et al. 1999; Forsterling 1992; Kelley 1967), so this situational variation contributes to the traits and states attributed to human and technological entities. Furthermore, situational variation influences the relationship and interaction in other ways. For example, we have recently carried out an experiment providing evidence that this situational variation itself (rather than the characteristics of the situations) influences memory, creativity, and self-disclosure to a mobile service; in particular, people disclose more in places they have previously disclosed to the service, than in new places (Sukumaran et al. 2009).
Not only does the situation vary, but mobile technologies are increasingly responsive to the environments they share with their human interactants. A system’s systematic and purposive responsiveness to the environment means means that explaining its behavior is about more than distinguishing internal and external causes: people explain behavior by attributing reasons to the entity, which may trivially either refer to internal or external causes. For example, contrast “Jack bought the house because it was secluded” (external) with “Jack bought the house because he wanted privacy” (internal) (Ross 1977, p. 176). Much research in the social cognition and attribution theory traditions of psychology has failed to address this richness of people’s everyday explanations of other ’s behavior (Malle 2004; McClure 2002), but contemporary, interdisciplinary work is elaborating on theories and methods from philosophy and developmental psychology to this end (e.g., the contributions to Malle et al. 2001).
These two developments — the increasing role of situational variation in human-technology relationships and a new appreciation of the richness of everyday explanations of behavior — are important to consider together in designing new research in human-computer interaction, psychology, and communication. Here are three suggestions about directions to pursue in light of this:
Design systems that provide constancy and support through radical situational changes in both the social and physical environment. For example, we have created a system that uses the voices of participants in an upcoming event as audio primes during transition periods (Sohn et al. 2009). This can help ease the transition from a long corporate meeting to a chat with fellow parents at a child’s soccer game.
Design experimental manipulations and measure based on features of folk psychology — the implicit theory or capabilities by which we attribute, e.g., beliefs, thoughts, and desires (propositional attitudes) to others (Dennett 1987) — identified by philosophers. For example, attributions propositional attitudes (e.g., beliefs) to an entity have the linguistic feature that one cannot substitute different terms that refer to the same object while maintaining the truth or appropriateness of the statement. This opacity in attributions of propositional attitudes is the subject of a large literature (e.g., following Quine 1953), but this has not been used as a lens for much empirical work, except for some developmental psychology (e.g., Apperly and Robinson 2003). Human-computer interaction research should use this opacity (and other underused features of folk psychology) in studies of how people think about systems.
Connect work on mental models of systems (e.g., Kempton 1986; Norman 1988) to theories of social cognition and folk psychology. I think we can expect much larger overlap in the process involved than in the current research literature: people use folk psychology to understand, predict, and explain technological systems — not just other people.
References
Apperly, I. A., & Robinson, E. J. (2003). When can children handle referential opacity? Evidence for systematic variation in 5- and 6-year-old children’s reasoning about beliefs and belief reports. Journal of Experimental Child Psychology, 85(4), 297-311. doi: 10.1016/S0022-0965(03)00099-7.
Dennett, D. C. (1987). The Intentional Stance (p. 388). MIT Press.
Fiedler, K., Walther, E., & Nickel, S. (1999). Covariation-based attribution: On the ability to assess multiple covariates of an effect. Personality and Social Psychology Bulletin, 25(5), 609.
Försterling, F. (1992). The Kelley model as an analysis of variance analogy: How far can it be taken? Journal of Experimental Social Psychology, 28(5), 475-490. doi: 10.1016/0022-1031(92)90042-I.
Kelley, H. H. (1967). Attribution theory in social psychology. In Nebraska Symposium on Motivation (Vol. 15).
Malle, B. F. (2004). How the Mind Explains Behavior: Folk Explanations, Meaning, and Social Interaction. Bradford Books.
Malle, B. F., Moses, L. J., & Baldwin, D. A. (2001). Intentions and Intentionality: Foundations of Social Cognition. MIT Press.
McClure, J. (2002). Goal-Based Explanations of Actions and Outcomes. In M. H. Wolfgang Stroebe (Ed.), European Review of Social Psychology (pp. 201-235). John Wiley & Sons, Inc. Retrieved from http://dx.doi.org/10.1002/0470013478.ch7.
Nass, C., & Moon, Y. (2000). Machines and Mindlessness: Social Responses to Computers. Journal of Social Issues, 56(1), 81-103.
Norman, D. A. (1988). The Psychology of Everyday Things. New York: Basic Books.
Quine, W. V. O. (1953). From a Logical Point of View: Nine Logico-Philosophical Essays. Harvard University Press.
Reeves, B., & Nass, C. (1996). The media equation: how people treat computers, television, and new media like real people and places (p. 305). Cambridge University Press.
Ross, L. (1977). The intuitive psychologist and his shortcomings: Distortions in the attribution process. In L. Berkowitz (Ed.), Advances in Experimental Social Psychology (Vol. 10, pp. 174-221). New York: Academic Press.
Sohn, T., Takayama, L., Eckles, D., & Ballagas, R. (2009). Auditory Priming for Upcoming Events. Forthcoming in CHI ’09 extended abstracts on Human factors in computing systems. Boston, Massachusetts, United States: ACM Press.
Sukumaran, A., Ophir, E., Eckles, D., & Nass, C. I. (2009). Variable Environments in Mobile Interaction Aid Creativity but Impair Learning and Self-disclosure. To be presented at the Association for Psychological Science Convention, San Francisco, California.
Sundar, S. S. (2004). Loyalty to computer terminals: is it anthropomorphism or consistency? Behaviour & Information Technology, 23(2), 107-118.
Motivations for tagging: organization and communication motives on Facebook
Increasing valuable annotation behaviors was a practical end of a good deal of work at Yahoo! Research Berkeley. ZoneTag is a mobile application and service that suggests tags when users choose to upload a photo (to Flickr) based on their past tags, the relevant tags of others, and events and places nearby. Through social influence and removing barriers, these suggestions influence users to expand and consistently use their tagging vocabulary (Ahern et al. 2006).
Context-aware suggestion techniques such as those used in ZoneTag can increase tagging, but what about users’ motivations for considering tagging in the first place? And how can these motivations for annotation be considered in designing services that involve annotation? In this post, I consider existing work on motivations for tagging, and I use tagging on Facebook as an example of how multiple motivations can combine to increase desired annotation behaviors.
Using photo-elicitation interviews with ZoneTag users who tag, Ames & Naaman (2007) present a two factor taxonomy of motivations for tagging. First, they categorize tagging motivations by function: is the motivating function of the tagging organizational or communicative? Organizational functions include supporting search, presenting photos by event, etc., while communicative functions include when tags provide information about the photos, their content, or are otherwise part of a communication (e.g., telling a joke). Second, they categorize tagging motivations by intended audience (or sociality): are the tags intended for my future self, people known to me (friends, family, coworkers, online contacts), or the general public?
On Flickr the function dimension generally maps onto the distinction between functionality that enables and is prior to arriving at the given photo or photos (organization) and functionality applicable once one is viewing a photo (communication). For example, I can find a photo (by me or someone else) by searching for a person’s name, and then use other tags applied to that photo to jog my memory of what event the photo was taken at.
Some Flickr users subscribe to RSS feeds for public photos tagged with their name, making for a communication function of tagging — particularly tagging of people in media — that is prior to “arriving” at a specific media object. These are generally techie power users, but this can matter for others. Some less techie participants in our studies reported noticing that their friends did this — so they became aware of tagging those friends’ names as a communicative act that would result in the friends finding the tagged photos.
This kind of function of tagging people is executed more generally — and for more than just techie power users — by Facebook. In tagging of photos, videos, and blog posts, tagging a person notifies them they have been tagged, and can add that they have been tagged to their friends’ News Feeds. This function has received a lot of attention from a privacy perspective (and it should). But I think it hints at the promise of making annotation behavior fulfill more of these functions simultaneously. When specifying content can also be used to specify recipients, annotation becomes an important trigger for communication.
—————
See some interesting comments (from Twitter) about tagging on Facebook:
- noticing people tagging to gain eyeballs
- exhorting others not to tag bad photos (and thanks)
- collapsing time by tagging photos from long ago
- tagging by parents
(Also see Facebook’s growing use and testing of autotagging [1, 2].)
References
Ames, M., & Naaman, M. (2007). Why we tag: motivations for annotation in mobile and online media. In Proceedings of CHI 2007 (pp. 971-980). San Jose, California, USA: ACM.
Ahern, S., Davis, M., Eckles, D., King, S., Naaman, M., Nair, R., et al. (2006). Zonetag: Designing context-aware mobile media capture to increase participation. Pervasive Image Capture and Sharing: New Social Practices and Implications for Technology Workshop. In Adjunct Proc. Ubicomp 2006.
Activity streams, personalization, and beliefs about our social neighborhood
Every person who logs into Facebook is met with the same interface but with personalized content. This interface is News Feed, which lists “news stories” generated by users’ Facebook friend. These news stories include the breaking news that Andrew was just tagged in a photo, that Neema declared he is a fan of a particular corporation, that Ellen joined a group expressing support for a charity, and that Alan says, “currently enjoying an iced coffee… anyone want to see a movie tonight?”
News Feed is an example of a particular design pattern that has recently become quite common – the activity stream. An activity stream aggregates actions of a set of individuals – such as a person’s egocentric social network – and displays the recent and/or interesting ones.
I’ve previously analysed, in a more fine-grained analysis of a particular (and now changed) interface element for setting one’s Facebook status message, how activity streams bias our beliefs about the frequency of others’ participation on social network services (SNSs). It works like this:
- We use availability to mind as a heuristic for estimating probability and frequency (Kahneman & Tversky, 1973). So if it is easier to think of a possibility, we judge it to be more likely or frequent. This heuristic is often helpful, but it also leads to bias due to, e.g., recent experience, search strategy (compare thinking of words starting with ‘r’ versus words with ‘r’ as the third letter).
- Activity streams show a recent subset of the activity available (think for now of a simple activity stream, like that on one’s Twitter home page).
- Activity streams show activity that is more likely to be interesting and is more likely to have comments on it.
Through the availability heuristic (and other mechanisms) this leads to one to estimate that (1) people in one’s egocentric network are generating activity on Facebook more frequently than they actually are and (2) stories with particular characteristics (e.g., comments on them) are more (or less) common in one’s egocentric network than they actually are.
Personalized cultivation
When thinking about this in the larger picture, one can see this as a kind of cultivation effect of algorithmic selection processes in interpersonal media. According to cultivation theory (see Williams, 2006, for an application to MMORGs), our long-term exposure to media makes leads us to see the real world through the lens of the media world; this exposure gradually results in beliefs about the world based on the systematic distortions of the media world (Gerbner et al., 1980). For example, heavy television viewing predicts giving more “television world” answers to questions — overestimating the frequency of men working in law enforcement and the probability of experiencing violent acts. A critical difference here is that with activity streams, similar cultivation can occur with regard to our local social and cultural neighborhood.
Aims of personalization
Automated personalization has traditionally focused on optimizing for relevance – keep users looking, get them clicking for more information, and make them participate related to this relevant content. But the considerations here highlight another goal of personalization: personalization for strategic influence on attitudes that matter for participation. These goals can be in tension. For example, should the system present…
The most interesting and relevant photos to a user?
Showing photographs from a user’s network that have many views and comments may result in showing photos that are very interesting to the user. However, seeing these photos can lead to inaccurate beliefs about how common different kinds of photos are (for example, overestimating the frequency of high-quality, artistic photos and underestimating the frequency of “poor-quality” cameraphone photos). This can discourage participation through perceptions of the norms for the network or the community.
On the other hand, seeing photos with so many comments or views may lead to overestimating how many comments one is likely to get on one’s own photo; this can result in disappointment following participation.
Activity from a user’s closest friends?
Assume that activity from close friends is more likely to be relevant and interesting. It might even be more likely to prompt participation, particularly in the form of comments and replies. But it can also bias judgments of likely audience: all those people I don’t know so well are harder to bring to mind as is, but if they don’t appear much in the activity stream for my network, I’m less likely to consider them when creating my content. This could lead to greater self-disclosure, bad privacy experiences, poor identity management, and eventual reduction in participation.
References
Gerbner, G., Gross, L., Morgan, M., & Signorielli, N. (1980). The “Mainstreaming” of America: Violence Profile No. 11. Journal of Communication, 30(3), 10-29.
Kahneman, D., & Tversky, A. (1973). Availability: A heuristic for judging frequency and probability. Cognitive Psychology, 5, 207-232.
Williams, D. (2006). Virtual Cultivation: Online Worlds, Offline Perceptions. Journal of Communication, 56, 69-87.
Transformed social interaction and actively mediated communication
Transformed social interaction (TSI) is modification, filtering, and synthesis of representations of face-to-face communication behavior, identity cues, and sensing in a collaborative virtual environment (CVE): TSI flexibly and strategically decouples representation from behavior. In this post, I want to extend this notion of TSI, as presented in Bailenson et al. (2005), in two general ways. We have begun calling the larger category actively mediated communication.1
First, I want to consider a larger category of strategic mediation in which no communication behavior is changed or added between different existing participants. This includes applying influence strategies to the feedback to the communicator as in coaching (e.g., Kass 2007) and modification of the communicator’s identity as presented to himself (i.e. the transformations of the Proteus effect). This extension entails a kind of unification of TSI with persuasive technology for computer-mediated communication (CMC; Fogg 2002, Oinas-Kukkonen & Harjumaa 2008).
Second, I want to consider a larger category of media in which the same general ideas of TSI can be manifest, albeit in quite different ways. As described by Bailenson et al. (2005), TSI is (at least in exemplars) limited to transformations of representations of the kind of non-verbal behavior, sensing, and identity cues that appear in face-to-face communication, and thus in CVEs. I consider examples from other forms of communication, including active mediation of the content, verbal or non-verbal, of a communication.
Feedback and influence strategies: TSI and persuasive technology
TSI is exemplified by direct transformation that is continuous and dynamic, rather than, e.g., static anonymization or pseudonymization. These transformations are complex means to strategic ends, and they function through a “two-step” programmatic-psychological process. For example, a non-verbal behavior is changed (modified, filtered, replaced), and then the resulting representation affects the end through a psychological process in other participants. Similar ends can be achieved by similar means in the second (psychological) step, without the same kind of direct programmatic change of the represented behavior.
In particular, consider coaching of non-verbal behavior in a CVE, a case already considered as an example of TSI (Bailenson et al. 2005, pp. 434-6), if not a particularly central one. In one case, auxiliary information is used to help someone interact more successfully:
In those interactions, we render the interactants’ names over their heads on floating billboards for the experimenter to read. In this manner the experimenter can refer to people by name more easily. There are many other ways to use these floating billboards to assist interactants, for example, reminders about the interactant’s preferences or personality (e.g., “doesn’t respond well to prolonged mutual gaze”). (Bailenson et al. 2005, pp. 435-436)
While this method can bring about change in non-verbal behaviors as represented in the CVE and thus achieve the same strategic goals by the same means in the second (psychological) step, it does not do so in the characteristic TSI way: it doesn’t decouple the representation from the behavior; instead it changes the behavior itself in the desired way. I think our understanding of the core of TSI is improved by excluding this kind of active mediation (even that presented by Bailenson et al.) and considering it instead a proper part of the superset – actively mediated communication. With this broadened scope we can take advantage of the wider range of strategies, taxonomies, and examples available from the study of persuasive technology.
TSI ideas outside CVEs
TSI is established as applying to CVEs. Standard TSI examples take place in CVEs and the feasibility of TSI is discussed with regard to CVEs. This focus is also manifest in the fact that it is behaviors, identity cues, and sensing that are normally available that are the starting point for transformation. Some of the more radical transformations of sensing and identity are nonetheless explained with reference to real-world manifestation: for example, helpers walk like ghosts amongst those you are persuading, reporting back on what they learn.
But I think this latter focus is just an artifact of the fact that, in a CVE, all the strategic transformations have to be manifest as representations of face-to-face encounters. As evidence for the anticipation of the generalization of TSI ideas beyond CVEs, we see that Bailenson et al. (2005, p. 428) introduce TSI with examples from the kind of outright blocking of any representation of particular non-verbal behaviors in telephone calls. Of course, this is not the kind of dynamic transformation characteristic of TSI, but this highlights how TSI ideas make sense outside of CVEs as well. To make it more clear what I mean by this, I present three examples: transformation of a shared drawing, coaching and augmentation in face-to-face conversation, and aggregation and synthesis in an SNS-based event application, like Facebook Events.
This more general notion of actively mediated communication is present in the literature as early as 1968 with the work of Licklider & Taylor (1968). In one interesting example, which is also a great example of 1960s gender roles, a man is draws an arrow-pierced heart with his initials and the initials of a romantic interest or partner, but when this heart is shared with her (perhaps in real time as he draws it), it is rendered as a beautiful heart with little resemblance to his original, poor sketch. The figure illustrating the example is captioned, “A communication system should make a positive contribution to the discovery and arousal of interests” (Licklider & Taylor 1968, p. 26). This example clearly exemplifies the idea of TSI – decoupling the original behavior from its representation in a strategic way that requires an intelligent process (or human-in-the-loop) making the transformation responsive to the specific circumstances and goals.
Licklider & Taylor also consider examples in which computers take an active role in a face-to-face presentation by adding a shared, persuasive simulation (cf. Fogg 2002 on computers in the functional role of interactive media such as games and simulations). But a clearer example, that also bears more resemblance to characteristic TSI examples, is conversation and interaction coaching via a wireless headset that can determine how much each participant is speaking, for how long, and how often they interrupt each other (Kass 2007). One could even imagine a case with greater similarity to the TSI example considered in the previous case: a device whispers in your ear the known preferences of the person you are talking to face-to-face (e.g., that he doesn’t respond well to prolonged mutual gaze).
Finally, I want to share an example that is a bit farther afield from TSI exemplars, but highlights how ubiquitous this general category is becoming. Facebook includes a social event planning application with which users can create and comment on events, state their plans to attend, and share personal media and information before and after it occurs. Facebook presents relevant information about one’s network in a single “News Feed”. Event related items can appear in this feed, and they feature active mediation: a user can see an item stating that “Jeff, Angela, Rich, and 6 other friends are attending X. It is at 9pm tonight” – but none of these people or the event creator, ever wrote this text. It has been generated strategically: it is encouraging considering coming to the event and it is designed to maximize the user’s sense of relevance of their News Feed. The original content, peripheral behavior, and form of their communications have been aggregated and synthesized into a new communication that better suits the situation than the original.
Source orientation in actively mediated communication
Bailenson et al. (2005) considers the consequences of TSI for trust in CVEs and how possible TSI detection is. I’ve suggested that we can see TSI-like phenomena, both actual and possible, outside of CVEs and outside of a narrow version of TSI in which directly changing (programmatically) the represented behavior without changing the actual behavior is required. Many of the same consequences for trust may apply.
But even when the active mediation is to some degree explicit – participants are aware that some active mediation is going on, though perhaps not exactly what – interesting questions about source orientation still apply. There is substantial evidence that people orient to the proximal rather than distal source in use of computers and other media (Sundar & Nass 2000, Nass & Moon 2000), but this work has been limited to relatively simple situations, rather than the complex multi-sourced, actively mediated communications under discussion. I think we should expect that proximality will not consistently predict degree of source orientation (impact of source characteristics) in these circumstances: the most proximal source may be a dumb terminal/pipe (cf. the poor evidence for proximal source orientation in the case of televisions, Reeves & Nass 1996), or the most proximal source may be an avatar, the second most proximal might be a cyranoid/ractor or a computer process, while the more distant is the person whose visual likeness is similar to that of the avatar; and in these cases one would expect the source orientation to not be the most proximal, but to be the sources that are more phenomenologically present and more available to mind.
This seems like a promising direction for research to me. Most generally, it is part of the study of source orientation in more complex configurations – with multiple devices, multiple sources, and multiple brands and identities. Consider a basic three condition experiment in which participants interact with another person and are either told (1) nothing about any active mediation, (2) there is a computer actively mediating the communications of the other person, (3) there is a human (or perhaps multiple humans) actively mediating the communications of the other person. I am not sure this is the best design, but I think it hints in the direction of the following questions:
- When and how do people apply familiar social cognition strategies (e.g., folk psychology of propositional attitudes) to understanding, explaining, and predicting the behavior of a collection of people (e.g., multiple cyranoids, or workers in a task completion market like Amazon Mechanical Turk)?
- What differences are there in social responses, source orientation, and trust between active mediation that is (ostensibly) carried out by (1) a single human, (2) multiple humans each doing very small pieces, (3) a computer?
References
Eckles, D., Ballagas, R., Takayama, L. (unpublished manuscript). The Design Space of Computer-Mediated Communication: Dimensional Analysis and Actively Mediated Communication.
Fogg, B.J. (2002). Persuasive Technology: Using Computers to Change What We Think and Do. Morgan Kaufmann.
Kass, A. (2007). Transforming the Mobile Phone into a Personal Performance Coach. Mobile Persuasion: 20 Perspectives on the Future of Influence, ed. B.J. Fogg & D. Eckles, Stanford Captology Media.
Licklider, J.C.R., & Taylor, R.W. (1968). The Computer as a Communication Device. Science and Technology, April 1968. Page numbers from version reprinted at http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-061.html.
Nass, C., and Moon, Y. (2000). Machines and Mindlessness: Social Responses to Computers. Journal of Social Issues, 56(1), 81-103.
Oinas-Kukkonen, H., & Harjumaa, M. (2008). A Systematic Framework for Designing and Evaluating Persuasive Systems. In Proceedings of Persuasive Technology: Third International Conference, Springer, pp. 164-176.
Sundar, S. S., & Nass, C. (2000). Source Orientation in Human-Computer Interaction Programmer, Networker, or Independent Social Actor? Communication Research, 27(6).
- This idea is expanded upon in Eckles, Ballagas, and Takayama (ms.), to be presented at the workshop on Socially Mediating Technologies at CHI 2009. This working paper will be available online soon. [↩]
Source orientation and persuasion in multi-device and multi-context interactions
At the Social Media Workshop, Katarina Segerståhl presented her on-going work on what she has termed extended information services or distributed user experiences — human-computer interactions that span multiple and heterogeneous devices (Segerståhl & Oinas-Kukkonen 2007). As a central example, she studies a persuasive technology service for planning, logging, reviewing, and motivating exercise: these parts of the experience are distributed across the user’s PC, mobile phone, and heart rate monitor.
In one interesting observation, Segerståhl notes that the specific user interfaces on one device can be helpful mental images even when a different device is in use: participants reported picturing their workout plan as it appeared on their laptop and using it to guide their actions during their workout, during which the obvious, physically present interface with the service was the heart rate monitor, not the earlier planning visualization. Her second focus is how to make these user experiences coherent, with clear practical applications in usability and user experience design (e.g., how can designers make the interfaces both appropriately consistent and differentiated?).
In this post, I want to connect this very interesting and relevant work with some other research at the historical and theoretical center of persuasive technology: source orientation in human-computer interaction. First, I’ll relate source orientation to the history and intellectual context of persuasive technology. Then I’ll consider how multi-device and multi-context interactions complicate source orientation.
Source orientation, social responses, and persuasive technology
As an incoming Ph.D. student at Stanford University, B.J. Fogg already had the goal of improving generalizable knowledge about how interactive technologies can change attitudes and behaviors by design. His previous graduate studies in rhetoric and literary criticism had given him understanding of one family of academic approaches to persuasion. And in running a newspaper and consulting on many document design (Schriver 1997) projects, the challenges and opportunities of designing for persuasion were to him clearly both practical and intellectually exciting.
The ongoing research of Profs. Clifford Nass and Byron Reeves attracted Fogg to Stanford to investigate just this. Nass and Reeves were studying people’s mindless social responses to information and communication technologies. Cliff Nass’s research program — called Computers as (or are) Social Actors (CASA) — was obviously relevant: if people treat computers socially, this “opens the door for computers to apply […] social influence” to change attitudes and behaviors (Fogg 2002, p. 90). While clearly working within this program, Fogg focused on showing behavioral evidence of these responses (e.g., Fogg & Nass 1997): both because of the reliability of these measures and the standing of behavior change as a goal of practitioners.
Source orientation is central to the CASA research program — and the larger program Nass shared with Reeves. Underlying people’s mindless social responses to communication technologies is the fact that they often orient towards a proximal source rather than a distal one — even when under reflective consideration this does not make sense: people treat the box in front of them (a computer) as the source of information, rather than a (spatially and temporally) distant programmer or content creator. That is, their source orientation may not match the most relevant common cause of the the information. This means that features of the proximal source unduly influence e.g. the credibility of information presented or the effectiveness of attempts at behavior change.
For example, people will reciprocate with a particular computer if it is helpful, but not the same model running the same program right next to it (Fogg & Nass 1997, Moon 2000). Rather than orienting to the more distal program (or programmer), they orient to the box.1
Multiple devices, Internet services, and unstable context
These source orientation effects have been repeatedly demonstrated by controlled laboratory experiments (for reviews, see Nass & Moon 2000, Sundar & Nass 2000), but this research has largely focused on interactions that do not involve multiple devices, Internet services, or use in changing contexts. How is source orientation different in human-computer interactions that have these features?
This question is of increasing practical importance because these interactions now make up a large part of our interactions with computers. If we want to describe, predict, and design for how people use computers everyday — checking their Facebook feed on their laptop and mobile phone, installing Google Desktop Search and dialing into Google 411, or taking photos with their Nokia phone and uploading them to Nokia’s Ovi Share — then we should test, extend, and/or modify our understanding of source orientation. So this topic matters for major corporations and their closely guarded brands.
So why should we expect that multiple devices, Internet services, and changing contexts of use will matter so much for source orientation? After having explained the theory and evidence above, this may already be somewhat clear, so I offer some suggestive questions.
- If much of the experience (e.g. brand, visual style, on-screen agent) is consistent across these changes, how much will the effects of characteristics of the proximal source — the devices and contexts — be reduced?
- What happens when the proximal device could be mindfully treated as a source (e.g., it makes its own contribution to the interaction), but so does a distance source (e.g., a server)? This could be especially interesting with different branding combination between the two (e.g., the device and service are both from Apple, or the device is from HTC and service is from Google).
- What if the visual style or manifestation of the distal source varies substantially with the device used, perhaps taking on a style consistent with the device? This can already happen with SMS-based services, mobile Java applications, and voice agents that help you access distant media and services.
References
- This actually is subject to a good deal of cross-cultural variation. Similar experiments with Japanese — rather than American — participants show reciprocity to groups of computers, rather than just individuals (Katagiri et al.) [↩]