Ready-to-hand

Dean Eckles on people, technology & inference

social networks

Will the desire for other perspectives trump the “friendly world syndrome”?

Some recent journalism at NPR and The New York Times has addressed some aspects of the “friendly world syndrome” created by personalized media. A theme common to both pieces is that people want to encounter different perspectives and will use available resources to do so. I’m a bit more skeptical.

Here’s Natasha Singer at The New York Times on cascades of memes, idioms, and links through online social networks (e.g., Twitter):

If we keep seeing the same links and catchphrases ricocheting around our social networks, it might mean we are being exposed only to what we want to hear, says Damon Centola, an assistant professor of economic sociology at the Massachusetts Institute of Technology.

“You might say to yourself: ‘I am in a group where I am not getting any views other than the ones I agree with. I’m curious to know what else is out there,’” Professor Centola says.

Consider a new hashtag: diversity.

This is how Singer ends this article in which the central example is “icantdateyou” leading Egypt-related idioms as a trending topic on Twitter. The suggestion here, by Centola and Singer, is that people will notice they are getting a biased perspective of how many people agree with them and what topics people care about — and then will take action to get other perspectives.

Why am I skeptical?

First, I doubt that we really realize the extent to which media — and personalized social media in particular — bias their perception of the frequency of beliefs and events. Even though people know that fiction TV programs (e.g., cop shows) don’t aim to represent reality, heavy TV watchers (on average) substantially overestimate the percent of adult men employed in law enforcement.1 That is, the processes that produce the “friendly world syndrome” function without conscious awareness and, perhaps, even despite it. So people can’t consciously choose to seek out diverse perspectives if they don’t know they are increasingly missing them.

Second, I doubt that people actually want diversity of perspectives all that much. Even if I realize divergent views are missing from my media experience, why would I seek them out? This might be desirable for some people (but not all), and even for those, the desire to encounter people who radically disagree has its limits.

Similar ideas pop up in a NPR All Things Considered segment by Laura Sydell. This short piece (audio, transcript) is part of NPR’s “Cultural Fragmentation” series.2 The segment begins with the worry that offline bubbles are replicated online and quotes me describing how attempts to filter for personal relevance also heighten the bias towards agreement in personalized media.

But much of the piece has actually focuses on how one person — Kyra Gaunt, a professor and musician — is using Twitter to connect and converse with new and different people. Gaunt describes her experience on Twitter as featuring debate, engagement, and “learning about black people even if you’ve never seen one before”. Sydell’s commentary identifies the public nature of Twitter as an important factor in facilitating experiencing diverse perspectives:

But, even though there is a lot of conversation going on among African Americans on Twitter, Professor Gaunt says it’s very different from the closed nature of Facebook because tweets are public.

I think this is true to some degree: much of the content produced by Facebook users is indeed public, but Facebook does not make it as easily searchable or discoverable (e.g., through trending topics). But more importantly, Facebook and Twitter differ in their affordances for conversation. Facebook ties responses to the original post, which means both that the original poster controls who can reply and that everyone who replies is part of the same conversation. Twitter supports replies through the @reply mechanism, so that anyone can reply but the conversation is fragmented, as repliers and consumers often do not see all replies. So, as I’ve described, even if you follow a few people you disagree with on Twitter, you’ll most likely see replies from the other people you follow, who — more often than not — you agree with.

Gaunt’s experience with Twitter is certainly not typical. She has over 3,300 followers and follows over 2,400, so many of her posts will generate replies from people she doesn’t know well but whose replies will appear in her main feed. And — if she looks beyond her main feed to the @Mentions page — she will see the replies from even those she does not follow herself. On the other hand, her followers will likely only see her posts and replies from others they follow.3

Nonetheless, Gaunt’s case is worth considering further, as does Sydell:

SYDELL: Gaunt says she’s made new friends through Twitter.

GAUNT: I’m meeting strangers. I met with two people I had engaged with through Twitter in the past 10 days who I’d never met in real time, in what we say in IRL, in real life. And I met them, and I felt like this is my tribe.

SYDELL: And Gaunt says they weren’t black. But the key word for some observers is tribe. Although there are people like Gaunt who are using social media to reach out, some observers are concerned that she is the exception to the rule, that most of us will be content to stay within our race, class, ethnicity, family or political party.

So Professor Gaunt is likely making connections with people she would not have otherwise. But — it is at least tempting to conclude from “this is my tribe” — they are not people with radically different beliefs and values, even if they have arrived at those beliefs and values from a membership in a different race or class.

  1. Gerbner, G., Gross, L., Morgan, M., & Signorielli, N. (1980). The “Mainstreaming” of America: Violence Profile No. 11. Journal of Communication, 30(3), 10-29. []
  2. I was also interviewed for the NPR segment. []
  3. One nice feature in “new Twitter” — the recently refresh of the Twitter user interface — is that clicking on a tweet will show some of the replies to it in the right column. This may offer an easier way for followers to discover diverse replies to the people they follow. But it is also not particularly usable, as it is often difficult to even trace what a reply is a reply to. []

Academia vs. industry: Harvard CS vs. Google edition

Matt Welsh, a professor in the Harvard CS department, has decided to leave Harvard to continue his post-tenure leave working at Google. Welsh is obviously leaving a sweet job. In fact, it was not long ago that he was writing about how difficult it is to get tenure at Harvard.

So why is he leaving? Well, CS folks doing research in large distributed systems are in a tricky place, since the really big systems are all in industry. And instead of legions of experienced engineers to help build and study these systems, they have a bunch of lazy grad students! One might think, then, that this kind of (tenured) professor to industry move is limited to people creating and studying large deployments of computer systems.

There is a broader pull, I think. For researchers studying many central topics in the social sciences (e.g., social influence), there is a big draw to industry, since it is corporations that are collecting broad and deep data sets describing human behavior. To some extent, this is also a case of industry being appealing for people studying deployment of large deployments of computer systems — but it applies even to those who don’t care much about the “computer” part. In further parallels to the case with CS systems researchers, in industry they have talented database and machine learning experts ready to help, rather than social science grad students who are (like the faculty) too often afraid of math.

The “friendly world syndrome” induced by simple filtering rules

I’ve written previously about how filtered activity streams [edit: i.e. news feeds] can lead to biased views of behaviors in our social neighborhoods. Recent conversations with two people writing popular-press books on related topics have helped me clarify these ideas. Here I reprise previous comments on filtered activity streams, aiming to highlight how they apply even in the case of simple and transparent personalization rules, such as those used by Twitter.

Birds of a feather flock together. Once flying together, a flock is also subject to the same causes (e.g., storms, pests, prey). Our friends, family, neighbors, and colleagues are more similar to us for similar reasons (and others). So we should have no illusions that the behaviors, attitudes, outcomes, and beliefs of our social neighborhood are good indicators of those of other populations — like U.S. adults, Internet users, or homo sapiens of the past, present, or future. The apocryphal Pauline Kael quote “How could Nixon win? No one I know voted for him” suggests both the ease and error of this kind of inference. I take it as a given that people’s estimates of larger populations’ behaviors and beliefs are often biased in the direction of the behaviors and beliefs in their social neighborhoods. This is the case with and without “social media” and filtered activity streams — and even mediated communication in general.

That is, even without media, our personal experiences are not “representative” of the American experience, human experience, etc., but we do (and must) rely on it anyway. One simple cognitive tool here is using “ease of retrieval” to estimate how common or likely some event is: we can estimate how common something is based on how easy it is to think of. So if something prompts someone to consider how common a type of event is, they will (on average) estimate the event as more common if it is more easy to think of an example of the event, imagine the event, etc. And our personal experiences provide these examples and determine how easy they are to bring to mind. Both prompts and immediately prior experience can thus affect these frequency judgments via ease of retrieval effects.

Now this is not to say that we should think as ease of retrieval heuristics as biases per se. Large classes and frequent occurrences are often more available to mind than those that are smaller or less frequent. It is just that this is also often not the case, especially when there is great diversity in frequency among physical and social neighborhoods. But certainly we can see some cases where these heuristics fail.

Media are powerful sources of experiences that can make availability and actual frequency diverge, whether by increasing the biases in the direction of projecting our social neighborhoods onto larger population or in other, perhaps unexpected directions. In a classic and controversial line of research in the 1970s and 80s, Gerbner and colleagues argued that increased television-watching produces a “mean world syndrome” such that watching more TV causes people to increasingly overestimate, e.g., the fraction of adult U.S. men employed in law enforcement and the probability of being a victim of violent crime. Their work did not focus on investigating heuristics producing these effects, but others have suggested the availability heuristic (and related ease of retrieval effects) as at work. So even if my social neighborhood has fewer cops or victims of violent crime than the national average, media consumption and the availability heuristic can lead me to overestimate both.

Personalized and filtered activity streams certainly also affect us through some of the same psychological processes, leading to biases in users’ estimates of population-wide frequencies. They can aIso bias inference about our own social neighborhoods. If I try to estimate how likely a Facebook status update by a friend is to receive a comment, this estimate will be affected by the status updates I have seen recently. And if content with comments is more likely to be shown to me in my personalized filtered activity stream (a simple rule for selecting more interesting content, when there is too much for me to consume it all), then it will be easier for me to think of cases in which status updates by my friends do receive comments.

In my previous posts on these ideas, I have mainly focused on effects on beliefs about my social neighborhood and specifically behaviors and outcomes specific to the service providing the activity stream (e.g., receiving comments). But similar effects apply for beliefs about other behaviors, opinions, and outcomes. In particular, filtered activity streams can increase the sense that my social neighborhood (and perhaps the world) agrees with me. Say that content produced by my Facebook friends with comments and interaction from mutual friends is more likely to be shown in my filtered activity streams. Also assume that people are more likely to express their agreement in such a way than substantial disagreement. As long as I am likely to agree with most of my friends, then this simple rule for filtering produces an activity stream with content I agree with more than an unfiltered stream would. Thus, even if I have a substantial minority of friends with whom I disagree on politics, this filtering rule would likely make me see less of their content, since it is less likely to receive (approving) comments from mutual friends.

I’ve been casually calling this larger family of effects this the “friendly world syndrome” induced by filtered activity streams. Like the mean world syndrome of the television cultivation research described above, this picks out a family of unintentional effects of media. Unlike the mean world syndrome, the friendly world syndrome includes such results as overestimating how many friends I have in common with my friends, how much positive and accomplishment-reporting content my friends produce, and (as described) how much I agree with my friends.1

Even though the filtering rules I’ve described so far are quite simple and appealing, they still are more consistent with versions of activity streams that are filtered by fancy relevance models, which are often quite opaque to users. Facebook News Feed — and “Top News” in particular — is the standard example here. On the other hand, one might think that these arguments do not apply to Twitter, which does not apply any kind of machine learning model estimating relevance to filtering users’ streams. But Twitter actually does implement a filtering rule with important similarities to the “comments from mutual friends” rule described above. Twitter only shows “@replies” to a user on their home page when that user is following both the poster of the reply and the person being replied to.2 This rule makes a lot of sense, as a reply is often quite difficult to understand without the original tweet. Thus, I am much more likely to see people I follow replying to people I follow than to others (since the latter replies are encountered only from browsing away from the home page. I think this illustrates how even a straightforward, transparent rule for filtering content can magnify false consensus effects.

One aim in writing this is to clarify that a move from filtering activity streams using opaque machine learning models of relevance to filtering them with simple, transparent, user-configurable rules will likely be insufficient to prevent the friendly world syndrome. This change might have many positive effects and even reduce some of these effects by making people mindful of the filtering.3 But I don’t think these effects are so easily avoided in any media environment that includes sensible personalization for increased relevance and engagement.

  1. This might suggest that some of the false consensus effects observed in recent work using data collected about Facebook friends could be endogenous to Facebook. See Goel, S., Mason, W., & Watts, D. J. (2010). Real and perceived attitude agreement in social networks. Journal of Personality and Social Psychology, 99(4), 611-621. doi:10.1037/a0020697 []
  2. Twitter offers the option to see all @replies written by people one is following, but 98% of users use the default option. Some users were unhappy with an earlier temporary removal of this feature. My sense is that the biggest complaint was that removing this feature removed a valuable means for discovering new people to follow. []
  3. We are investigating this in ongoing experimental research. Also see Schwarz, N., Bless, H., Strack, F., Klumpp, G., Rittenauer-Schatka, H., & Simons, A. (1991). Ease of retrieval as information: Another look at the availability heuristic. Journal of Personality and Social Psychology, 61(2), 195-202. doi:10.1037/0022-3514.61.2.195 []

Homophily and peer influence are messy business

Some social scientists have recently been getting themselves into trouble (and limelight) claiming that they have evidence of direct and indirect “contagion” (peer influence effects) in obesity, happiness, loneliness, etc. Statisticians and methodologists — and even science journalists — have pointed out their troubles. In observational data, peer influence effects are confounded with those of homophily and common external causes. That is, people are similar to other people in their social neighborhood because ties are more likely to form between similar people, and many external events that could cause the outcome are localized in networks (e.g., fast food restaurant opens down the street).

Econometricians1 have worked out the conditions necessary for peer influence effects to be identifiable.2 Very few studies have plausibly satisfied these requirements. But even if an investigator meets these requirements, it is worth remembering that homophily and peer influence are still tricky to think about — let along produce credible quantitative estimates of.

As Andrew Gelman notes, homophily can depend on network structure and information cascades (a kind of peer influence effect) to enable the homophilous relationships to form. Likewise, the success or failure of influence in a relationship can affect that relationship. For example, once I convert you to my way of thinking — let’s say, about climate change, we’ll be better friends. To me, it seems like some of the downstream consequences of our similarity should be attributed to peer influence. If I get fat and so you do, it could be peer influence in many ways: maybe that’s because I convinced you that owning a propane grill is more environmentally friendly (and then we both ended up grilling a lot more red meat). Sounds like peer influence to me. But it’s not that me getting fat caused you to.

Part of the problem here is looking only at peer influence effects in a single behavior or outcome at once. I look forward to the “clear thinking and adequate data” (Manski) that will allow us to better understand these processes in the future. Until then: scientists, please at least be modest in your claims and radical policy recommendations. This is messy business.

  1. They do statistics but speak a different language than big “S” statisticians — kind of like machine learning folks. []
  2. For example, see Manski, C. F. (2000). Economic analysis of social interactions. Journal of Economic Perspectives, 14(3):115–136. Economists call peer influence effects endogenous interactions and contextual interactions. []

Activity streams, personalization, and beliefs about our social neighborhood

Every person who logs into Facebook is met with the same interface but with personalized content. This interface is News Feed, which lists “news stories” generated by users’ Facebook friend. These news stories include the breaking news that Andrew was just tagged in a photo, that Neema declared he is a fan of a particular corporation, that Ellen joined a group expressing support for a charity, and that Alan says, “currently enjoying an iced coffee… anyone want to see a movie tonight?”

News Feed is an example of a particular design pattern that has recently become quite common – the activity stream. An activity stream aggregates actions of a set of individuals – such as a person’s egocentric social network – and displays the recent and/or interesting ones.

I’ve previously analysed, in a more fine-grained analysis of a particular (and now changed) interface element for setting one’s Facebook status message, how activity streams bias our beliefs about the frequency of others’ participation on social network services (SNSs). It works like this:

  • We use availability to mind as a heuristic for estimating probability and frequency (Kahneman & Tversky, 1973). So if it is easier to think of a possibility, we judge it to be more likely or frequent. This heuristic is often helpful, but it also leads to bias due to, e.g., recent experience, search strategy (compare thinking of words starting with ‘r’ versus words with ‘r’ as the third letter).
  • Activity streams show a recent subset of the activity available (think for now of a simple activity stream, like that on one’s Twitter home page).
  • Activity streams show activity that is more likely to be interesting and is more likely to have comments on it.

Through the availability heuristic (and other mechanisms) this leads to one to estimate that (1) people in one’s egocentric network are generating activity on Facebook more frequently than they actually are and (2) stories with particular characteristics (e.g., comments on them) are more (or less) common in one’s egocentric network than they actually are.

Personalized cultivation

When thinking about this in the larger picture, one can see this as a kind of cultivation effect of algorithmic selection processes in interpersonal media. According to cultivation theory (see Williams, 2006, for an application to MMORGs), our long-term exposure to media makes leads us to see the real world through the lens of the media world; this exposure gradually results in beliefs about the world based on the systematic distortions of the media world (Gerbner et al., 1980). For example, heavy television viewing predicts giving more “television world” answers to questions — overestimating the frequency of men working in law enforcement and the probability of experiencing violent acts. A critical difference here is that with activity streams, similar cultivation can occur with regard to our local social and cultural neighborhood.

Aims of personalization

Automated personalization has traditionally focused on optimizing for relevance – keep users looking, get them clicking for more information, and make them participate related to this relevant content. But the considerations here highlight another goal of personalization: personalization for strategic influence on attitudes that matter for participation. These goals can be in tension. For example, should the system present…

The most interesting and relevant photos to a user?

Showing photographs from a user’s network that have many views and comments may result in showing photos that are very interesting to the user. However, seeing these photos can lead to inaccurate beliefs about how common different kinds of photos are (for example, overestimating the frequency of high-quality, artistic photos and underestimating the frequency of “poor-quality” cameraphone photos). This can discourage participation through perceptions of the norms for the network or the community.

On the other hand, seeing photos with so many comments or views may lead to overestimating how many comments one is likely to get on one’s own photo; this can result in disappointment following participation.

Activity from a user’s closest friends?

Assume that activity from close friends is more likely to be relevant and interesting. It might even be more likely to prompt participation, particularly in the form of comments and replies. But it can also bias judgments of likely audience: all those people I don’t know so well are harder to bring to mind as is, but if they don’t appear much in the activity stream for my network, I’m less likely to consider them when creating my content. This could lead to greater self-disclosure, bad privacy experiences, poor identity management, and eventual reduction in participation.

References

Gerbner, G., Gross, L., Morgan, M., & Signorielli, N. (1980). The “Mainstreaming” of America: Violence Profile No. 11. Journal of Communication, 30(3), 10-29.

Kahneman, D., & Tversky, A. (1973). Availability: A heuristic for judging frequency and probability. Cognitive Psychology, 5, 207-232.

Williams, D. (2006). Virtual Cultivation: Online Worlds, Offline Perceptions. Journal of Communication, 56, 69-87.

Scroll to top