Transformed social interaction and actively mediated communication

Transformed social interaction (TSI) is modification, filtering, and synthesis of representations of face-to-face communication behavior, identity cues, and sensing in a collaborative virtual environment (CVE): TSI flexibly and strategically decouples representation from behavior. In this post, I want to extend this notion of TSI, as presented in Bailenson et al. (2005), in two general ways. We have begun calling the larger category actively mediated communication.1

First, I want to consider a larger category of strategic mediation in which no communication behavior is changed or added between different existing participants. This includes applying influence strategies to the feedback to the communicator as in coaching (e.g., Kass 2007) and modification of the communicator’s identity as presented to himself (i.e. the transformations of the Proteus effect). This extension entails a kind of unification of TSI with persuasive technology for computer-mediated communication (CMC; Fogg 2002, Oinas-Kukkonen & Harjumaa 2008).

Second, I want to consider a larger category of media in which the same general ideas of TSI can be manifest, albeit in quite different ways. As described by Bailenson et al. (2005), TSI is (at least in exemplars) limited to transformations of representations of the kind of non-verbal behavior, sensing, and identity cues that appear in face-to-face communication, and thus in CVEs. I consider examples from other forms of communication, including active mediation of the content, verbal or non-verbal, of a communication.

Feedback and influence strategies: TSI and persuasive technology

TSI is exemplified by direct transformation that is continuous and dynamic, rather than, e.g., static anonymization or pseudonymization. These transformations are complex means to strategic ends, and they function through a “two-step” programmatic-psychological process. For example, a non-verbal behavior is changed (modified, filtered, replaced), and then the resulting representation affects the end through a psychological process in other participants. Similar ends can be achieved by similar means in the second (psychological) step, without the same kind of direct programmatic change of the represented behavior.
In particular, consider coaching of non-verbal behavior in a CVE, a case already considered as an example of TSI (Bailenson et al. 2005, pp. 434-6), if not a particularly central one. In one case, auxiliary information is used to help someone interact more successfully:

In those interactions, we render the interactants’ names over their heads on floating billboards for the experimenter to read. In this manner the experimenter can refer to people by name more easily. There are many other ways to use these floating billboards to assist interactants, for example, reminders about the interactant’s preferences or personality (e.g., “doesn’t respond well to prolonged mutual gaze”). (Bailenson et al. 2005, pp. 435-436)

While this method can bring about change in non-verbal behaviors as represented in the CVE and thus achieve the same strategic goals by the same means in the second (psychological) step, it does not do so in the characteristic TSI way: it doesn’t decouple the representation from the behavior; instead it changes the behavior itself in the desired way. I think our understanding of the core of TSI is improved by excluding this kind of active mediation (even that presented by Bailenson et al.) and considering it instead a proper part of the superset – actively mediated communication. With this broadened scope we can take advantage of the wider range of strategies, taxonomies, and examples available from the study of persuasive technology.

TSI ideas outside CVEs

TSI is established as applying to CVEs. Standard TSI examples take place in CVEs and the feasibility of TSI is discussed with regard to CVEs. This focus is also manifest in the fact that it is behaviors, identity cues, and sensing that are normally available that are the starting point for transformation. Some of the more radical transformations of sensing and identity are nonetheless explained with reference to real-world manifestation: for example, helpers walk like ghosts amongst those you are persuading, reporting back on what they learn.

But I think this latter focus is just an artifact of the fact that, in a CVE, all the strategic transformations have to be manifest as representations of face-to-face encounters. As evidence for the anticipation of the generalization of TSI ideas beyond CVEs, we see that Bailenson et al. (2005, p. 428) introduce TSI with examples from the kind of outright blocking of any representation of particular non-verbal behaviors in telephone calls. Of course, this is not the kind of dynamic transformation characteristic of TSI, but this highlights how TSI ideas make sense outside of CVEs as well. To make it more clear what I mean by this, I present three examples: transformation of a shared drawing, coaching and augmentation in face-to-face conversation, and aggregation and synthesis in an SNS-based event application, like Facebook Events.

This more general notion of actively mediated communication is present in the literature as early as 1968 with the work of Licklider & Taylor (1968). In one interesting example, which is also a great example of 1960s gender roles, a man is draws an arrow-pierced heart with his initials and the initials of a romantic interest or partner, but when this heart is shared with her (perhaps in real time as he draws it), it is rendered as a beautiful heart with little resemblance to his original, poor sketch. The figure illustrating the example is captioned, “A communication system should make a positive contribution to the discovery and arousal of interests” (Licklider & Taylor 1968, p. 26). This example clearly exemplifies the idea of TSI – decoupling the original behavior from its representation in a strategic way that requires an intelligent process (or human-in-the-loop) making the transformation responsive to the specific circumstances and goals.

Licklider & Taylor also consider examples in which computers take an active role in a face-to-face presentation by adding a shared, persuasive simulation (cf. Fogg 2002 on computers in the functional role of interactive media such as games and simulations). But a clearer example, that also bears more resemblance to characteristic TSI examples, is conversation and interaction coaching via a wireless headset that can determine how much each participant is speaking, for how long, and how often they interrupt each other (Kass 2007). One could even imagine a case with greater similarity to the TSI example considered in the previous case: a device whispers in your ear the known preferences of the person you are talking to face-to-face (e.g., that he doesn’t respond well to prolonged mutual gaze).

Strategic transformation of a drawing for a romantic interest (Licklider & Taylor 1968, p. 26).

Strategic transformation of a drawing for a romantic interest (Licklider & Taylor 1968, p. 26).

Finally, I want to share an example that is a bit farther afield from TSI exemplars, but highlights how ubiquitous this general category is becoming. Facebook includes a social event planning application with which users can create and comment on events, state their plans to attend, and share personal media and information before and after it occurs. Facebook presents relevant information about one’s network in a single “News Feed”. Event related items can appear in this feed, and they feature active mediation: a user can see an item stating that “Jeff, Angela, Rich, and 6 other friends are attending X. It is at 9pm tonight” – but none of these people or the event creator, ever wrote this text. It has been generated strategically: it is encouraging considering coming to the event and it is designed to maximize the user’s sense of relevance of their News Feed. The original content, peripheral behavior, and form of their communications have been aggregated and synthesized into a new communication that better suits the situation than the original.

Source orientation in actively mediated communication

Bailenson et al. (2005) considers the consequences of TSI for trust in CVEs and how possible TSI detection is. I’ve suggested that we can see TSI-like phenomena, both actual and possible, outside of CVEs and outside of a narrow version of TSI in which directly changing (programmatically) the represented behavior without changing the actual behavior is required. Many of the same consequences for trust may apply.
But even when the active mediation is to some degree explicit – participants are aware that some active mediation is going on, though perhaps not exactly what – interesting questions about source orientation still apply. There is substantial evidence that people orient to the proximal rather than distal source in use of computers and other media (Sundar & Nass 2000, Nass & Moon 2000), but this work has been limited to relatively simple situations, rather than the complex multi-sourced, actively mediated communications under discussion. I think we should expect that proximality will not consistently predict degree of source orientation (impact of source characteristics) in these circumstances: the most proximal source may be a dumb terminal/pipe (cf. the poor evidence for proximal source orientation in the case of televisions, Reeves & Nass 1996), or the most proximal source may be an avatar, the second most proximal might be a cyranoid/ractor or a computer process, while the more distant is the person whose visual likeness is similar to that of the avatar; and in these cases one would expect the source orientation to not be the most proximal, but to be the sources that are more phenomenologically present and more available to mind.

This seems like a promising direction for research to me. Most generally, it is part of the study of source orientation in more complex configurations – with multiple devices, multiple sources, and multiple brands and identities. Consider a basic three condition experiment in which participants interact with another person and are either told (1) nothing about any active mediation, (2) there is a computer actively mediating the communications of the other person, (3) there is a human (or perhaps multiple humans) actively mediating the communications of the other person. I am not sure this is the best design, but I think it hints in the direction of the following questions:

  • When and how do people apply familiar social cognition strategies (e.g., folk psychology of propositional attitudes) to understanding, explaining, and predicting the behavior of a collection of people (e.g., multiple cyranoids, or workers in a task completion market like Amazon Mechanical Turk)?
  • What differences are there in social responses, source orientation, and trust between active mediation that is (ostensibly) carried out by (1) a single human, (2) multiple humans each doing very small pieces, (3) a computer?

References

Eckles, D., Ballagas, R., Takayama, L. (unpublished manuscript). The Design Space of Computer-Mediated Communication: Dimensional Analysis and Actively Mediated Communication.

Fogg, B.J. (2002). Persuasive Technology: Using Computers to Change What We Think and Do. Morgan Kaufmann.

Kass, A. (2007). Transforming the Mobile Phone into a Personal Performance Coach. Mobile Persuasion: 20 Perspectives on the Future of Influence, ed. B.J. Fogg & D. Eckles, Stanford Captology Media.

Licklider, J.C.R., & Taylor, R.W. (1968). The Computer as a Communication Device. Science and Technology, April 1968. Page numbers from version reprinted at http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-061.html.

Nass, C., and Moon, Y. (2000). Machines and Mindlessness: Social Responses to Computers. Journal of Social Issues, 56(1), 81-103.

Oinas-Kukkonen, H., & Harjumaa, M. (2008). A Systematic Framework for Designing and Evaluating Persuasive Systems. In Proceedings of Persuasive Technology: Third International Conference, Springer, pp. 164-176.

Sundar, S. S., & Nass, C. (2000). Source Orientation in Human-Computer Interaction Programmer, Networker, or Independent Social Actor? Communication Research, 27(6).

  1. This idea is expanded upon in Eckles, Ballagas, and Takayama (ms.), to be presented at the workshop on Socially Mediating Technologies at CHI 2009. This working paper will be available online soon. []

2 Responses to this post.

  1. Posted by Lynn Marentette on January 5th, 2009 at 2:18 pm

    Dean,

    I came across your blog today and look forward to exploring it some more. I’m interested in collaborative, off-the-desktop technologies that support interaction.

    I especially appreciate your scholarly approach to your posts. It saves time for those of us who like to dig a little deeper from time to time!

    Lynn Marentette

  2. Posted by Dean Eckles on January 5th, 2009 at 2:50 pm

    Glad you are finding it interesting.

    It can be difficult to balance accessibility to a wide audience, scholarly rigor, and my own need to just get the ideas down — sometimes without sufficient introduction.

    From a quick look at your blog, it looks like I should add it to my reader as well.

Respond to this post