Do what the virtuous person would do?

In the film The Descendents, George Clooney’s character Matt King wrestles — sometimes comically — with new and old choices involving his family and Hawaii. In one case, King decides he wants to meet a rival, both just to meet him and to give him some news; that is, he (at least explicitly) has generally good reason to meet him. Perhaps he even ought to meet him. When he actually does meet him, he cannot just do these things, he also argues with his rival, etc. King’s unplanned behaviors end up causing his rival considerable trouble.1

This struck me as related to some challenges in formulating what one should do — that is, in the “practical reasoning” side of ethics.

One way of getting practical advice out of virtue ethics is to say that one should do what the virtuous person would do in this situation. On its face, this seems right. But there are also some apparent counterexamples. Consider a short-tempered tennis player who has just lost a match.2 In this situation, the virtuous person would walk over to his opponent, shake his hand, and say something like “Good match.” But if this player does that, he is likely to become enraged and even assault his victorious opponent. So it seems better for him to walk off the court without attempting any of this — even though this is clearly rude.

The simple advice to do what the virtuous person would do in the present situation is, then, either not right or not so simple. It might be right, but not so simple to implement, if part of “the present situation” is one’s own psychological weaknesses. Aspects of the agent’s psychology — including character flaws — seem to license bad behavior and to remove reasons for taking the “best” actions.

King and other characters in The Descendents face this problem, both in the example above and at some other points in the movie. He begins a course of action (at least in part) because this is what the virtuous person would do. But then he is unable to really follow through because he lacks the necessary virtues.3 We might take this as a reminder of the ethical value to being humble — to account for our faults — when reasoning about what we ought to do.4 It is also a reminder of how frustrating this can be, especially when one can imagine (and might actually be able to) following through on doing what the virtuous person would do.

One way to cope with these weaknesses is to leverage other aspects of one’s situation. We can make public commitments to do the virtuous thing. We can change our environment, sometimes by binding our future selves, like Ulysses, from acting on our vices once we’ve begun our (hopefully) virtuous course of action. Perhaps new mobile technologies will be a substantial help here — helping us intervene in our own lives in this way.

  1. Perhaps deserved trouble. But this certainly didn’t play a stated role in the reasoning justifying King’s decision to meet him. []
  2. This example is first used by Gary Watson (“Free Agency”, 1975) and put to this use by Michael Smith in his “Internalism” (1995). Smith introduces it as a clear problem for the “example” model of how what a virtuous person would do matters for what we should each do. []
  3. Another reading of some of these events in The Descendents is that these characters actually want to do the “bad behaviors”, and they (perhaps unconciously) use their good intentions to justify the course of action that leads to the bad behavior. []
  4. Of course, the other side of such humility is being short on self-efficacy. []

Ethical persuasion profiling?

Persuasion profiling — estimating the effects of available influence strategies on an individual and adaptively selecting the strategies to use based on these estimates — sounds a bit scary. For many, ‘persuasion’ is a dirty word and ‘profiling’ generally doesn’t have positive connotations; together they are even worse! So why do we use this label?

In fact, Maurits Kaptein and I use this term, coined by BJ Fogg, precisely because it sounds scary. We see the potential for quite negative consequences of persuasion profiling, so we try to alert our readers to this.1

On the other hand, we also think that, not only is persuasion profiling sometimes beneficial, but there are cases where choosing not to adapt to individual differences in this way might itself be unethical.2 If a company marketing a health intervention knows that there is substantial variety in how people respond to the strategies used in the intervention — such that while the intervention has positive effects on average, it has negative effects for some — it seems like they have two ethical options.

First, they can be honest about this in their marketing, reminding consumers that it doesn’t work for everyone or even trying to market it to people it is more likely to work for. Or they could make this interactive intervention adapt to individuals — by persuasion profiling.

Actually for the first option to really work, the company needs to at least model how these responses vary by observable and marketable-to characteristics (e.g., demographics). And it may be that this won’t be enough if there is too much heterogeneity: even within some demographic buckets, the intervention may have negative effects for a good number of would-be users. On the other hand, by implementing persuasion profiling, the intervention will help more people, and the company will be able to market it more widely — and more ethically.

A simplified example that is somewhat compelling to me at least, but certainly not airtight. In another post, I’ll describe how somewhat foreseeable, but unintended, consequences should also give one pause.

  1. You might say we tried to build in a warning for anyone discussing or promoting this work. []
  2. We argue this in the paper we presented at Persuasive Technology 2010. The text below reprises some of what we said about our “Example 4” in that paper.
    Kaptein, M. & Eckles, D. (2010). Selecting effective means to any end: Futures and ethics of persuasion profiling. Proceedings of Persuasive Technology 2010, Lecture Notes in Computer Science. Springer. []

Traits, adaptive systems & dimensionality reduction

Psychologists have posited numerous psychological traits and described causal roles they ought to play in determining human behavior. Most often, the canonical measure of a trait is a questionnaire. Investigators obtain this measure for some people and analyze how their scores predict some outcomes of interest. For example, many people have been interested in how psychological traits affect persuasion processes. Traits like need for cognition (NFC) have been posited and questionnaire items developed to measure them. Among other things, NFC affects how people respond to messages with arguments for varying quality.

How useful are these traits for explanation, prediction, and adaptive interaction? I can’t address all of this here, but I want to sketch an argument for their irrelevance to adaptive interaction — and then offer a tentative rejoinder.

Interactive technologies can tailor their messages to the tastes and susceptibilities of the people interacting with and through them. It might seem that these traits should figure in the statistical models used to make these adaptive selections. After all, some of the possible messages fit for, e.g., coaching a person to meet their exercise goals are more likely to be effective for low NFC people than high NFC people, and vice versa. However, the standard questionnaire measures of NFC cannot often be obtained for most users — certainly not in commerce settings, and even people signing up for a mobile coaching service likely don’t want to answer pages of questions. On the other hand, some Internet and mobile services have other abundant data available about their users, which could perhaps be used to construct an alternative measure of these traits. The trait-based-adaptation recipe is:

  1. obtain the questionnaire measure of the trait for a sample,
  2. predict this measure with data available for many individuals (e.g., log data),
  3. use this model to construct a measure for out-of-sample individuals.

This new measure could then be used to personalize the interactive experience based on this trait, such that if a version performs well (or poorly) for people with a particular score on the trait, then use (or don’t use) that version for people with similar scores.

But why involve the trait at all? Why not just personalize the interactive experience based on the responses of similar others? Since the new measure of the trait is just based on the available behavioral, demographic, and other logged data, one could simply predict responses based on those measure. Put in geometric terms, if the goal is to project the effects of different message onto available log data, why should one project the questionnaire measure of the trait onto the available log data and then project the effects onto this projection? This seems especially unappealing if one doesn’t fully trust the questionnaire measure to be accurate or one can’t be sure about which the set of all the traits that make a (substantial) difference.

I find this argument quite intuitively appealing, and it seems to resonate with others.1 But I think there are some reasons the recipe above could still be appealing.

One way to think about this recipe is as dimensionality reduction guided by theory about psychological traits. Available log data can often be used to construct countless predictors (or “features”, as the machine learning people call them). So one can very quickly get into a situation where the effective number of parameters for a full model predicting the effects of different messages is very large and will make for poor predictions. Nothing — no, not penalized regression, not even a support vector machine — makes this problem go away. Instead, one has to rely on the domain knowledge of the person constructing the predictors (i.e., doing the “feature engineering”) to pick some good ones.

So the tentative rejoinder is this: established psychological traits might often make good dimensions to predict effects of different version of a message, intervention, or experience with. And they may “come with” suggestions about what kinds of log data might serve as measures of them. They would be expected to be reusable across settings. Thus, I think this recipe is nonetheless deserves serious attention.

  1. I owe some clarity on this to some conversations with Mike Nowak and Maurits Kaptein. []

The “friendly world syndrome” induced by simple filtering rules

I’ve written previously about how filtered activity streams can lead to biased views of behaviors in our social neighborhoods. Recent conversations with two people writing popular-press books on related topics have helped me clarify these ideas. Here I reprise previous comments on filtered activity streams, aiming to highlight how they apply even in the case of simple and transparent personalization rules, such as those used by Twitter.

Birds of a feather flock together. Once flying together, a flock is also subject to the same causes (e.g., storms, pests, prey). Our friends, family, neighbors, and colleagues are more similar to us for similar reasons (and others). So we should have no illusions that the behaviors, attitudes, outcomes, and beliefs of our social neighborhood are good indicators of those of other populations — like U.S. adults, Internet users, or homo sapiens of the past, present, or future. The apocryphal Pauline Kael quote “How could Nixon win? No one I know voted for him” suggests both the ease and error of this kind of inference. I take it as a given that people’s estimates of larger populations’ behaviors and beliefs are often biased in the direction of the behaviors and beliefs in their social neighborhoods. This is the case with and without “social media” and filtered activity streams — and even mediated communication in general.

That is, even without media, our personal experiences are not “representative” of the American experience, human experience, etc., but we do (and must) rely on it anyway. One simple cognitive tool here is using “ease of retrieval” to estimate how common or likely some event is: we can estimate how common something is based on how easy it is to think of. So if something prompts someone to consider how common a type of event is, they will (on average) estimate the event as more common if it is more easy to think of an example of the event, imagine the event, etc. And our personal experiences provide these examples and determine how easy they are to bring to mind. Both prompts and immediately prior experience can thus affect these frequency judgments via ease of retrieval effects.

Now this is not to say that we should think as ease of retrieval heuristics as biases per se. Large classes and frequent occurrences are often more available to mind than those that are smaller or less frequent. It is just that this is also often not the case, especially when there is great diversity in frequency among physical and social neighborhoods. But certainly we can see some cases where these heuristics fail.

Media are powerful sources of experiences that can make availability and actual frequency diverge, whether by increasing the biases in the direction of projecting our social neighborhoods onto larger population or in other, perhaps unexpected directions. In a classic and controversial line of research in the 1970s and 80s, Gerbner and colleagues argued that increased television-watching produces a “mean world syndrome” such that watching more TV causes people to increasingly overestimate, e.g., the fraction of adult U.S. men employed in law enforcement and the probability of being a victim of violent crime. Their work did not focus on investigating heuristics producing these effects, but others have suggested the availability heuristic (and related ease of retrieval effects) as at work. So even if my social neighborhood has fewer cops or victims of violent crime than the national average, media consumption and the availability heuristic can lead me to overestimate both.

Personalized and filtered activity streams certainly also affect us through some of the same psychological processes, leading to biases in users’ estimates of population-wide frequencies. They can aIso bias inference about our own social neighborhoods. If I try to estimate how likely a Facebook status update by a friend is to receive a comment, this estimate will be affected by the status updates I have seen recently. And if content with comments is more likely to be shown to me in my personalized filtered activity stream (a simple rule for selecting more interesting content, when there is too much for me to consume it all), then it will be easier for me to think of cases in which status updates by my friends do receive comments.

In my previous posts on these ideas, I have mainly focused on effects on beliefs about my social neighborhood and specifically behaviors and outcomes specific to the service providing the activity stream (e.g., receiving comments). But similar effects apply for beliefs about other behaviors, opinions, and outcomes. In particular, filtered activity streams can increase the sense that my social neighborhood (and perhaps the world) agrees with me. Say that content produced by my Facebook friends with comments and interaction from mutual friends is more likely to be shown in my filtered activity streams. Also assume that people are more likely to express their agreement in such a way than substantial disagreement. As long as I am likely to agree with most of my friends, then this simple rule for filtering produces an activity stream with content I agree with more than an unfiltered stream would. Thus, even if I have a substantial minority of friends with whom I disagree on politics, this filtering rule would likely make me see less of their content, since it is less likely to receive (approving) comments from mutual friends.

I’ve been casually calling this larger family of effects this the “friendly world syndrome” induced by filtered activity streams. Like the mean world syndrome of the television cultivation research described above, this picks out a family of unintentional effects of media. Unlike the mean world syndrome, the friendly world syndrome includes such results as overestimating how many friends I have in common with my friends, how much positive and accomplishment-reporting content my friends produce, and (as described) how much I agree with my friends.1

Even though the filtering rules I’ve described so far are quite simple and appealing, they still are more consistent with versions of activity streams that are filtered by fancy relevance models, which are often quite opaque to users. Facebook News Feed — and “Top News” in particular — is the standard example here. On the other hand, one might think that these arguments do not apply to Twitter, which does not apply any kind of machine learning model estimating relevance to filtering users’ streams. But Twitter actually does implement a filtering rule with important similarities to the “comments from mutual friends” rule described above. Twitter only shows “@replies” to a user on their home page when that user is following both the poster of the reply and the person being replied to.2 This rule makes a lot of sense, as a reply is often quite difficult to understand without the original tweet. Thus, I am much more likely to see people I follow replying to people I follow than to others (since the latter replies are encountered only from browsing away from the home page. I think this illustrates how even a straightforward, transparent rule for filtering content can magnify false consensus effects.

One aim in writing this is to clarify that a move from filtering activity streams using opaque machine learning models of relevance to filtering them with simple, transparent, user-configurable rules will likely be insufficient to prevent the friendly world syndrome. This change might have many positive effects and even reduce some of these effects by making people mindful of the filtering.3 But I don’t think these effects are so easily avoided in any media environment that includes sensible personalization for increased relevance and engagement.

  1. This might suggest that some of the false consensus effects observed in recent work using data collected about Facebook friends could be endogenous to Facebook. See Goel, S., Mason, W., & Watts, D. J. (2010). Real and perceived attitude agreement in social networks. Journal of Personality and Social Psychology, 99(4), 611-621. doi:10.1037/a0020697 []
  2. Twitter offers the option to see all @replies written by people one is following, but 98% of users use the default option. Some users were unhappy with an earlier temporary removal of this feature. My sense is that the biggest complaint was that removing this feature removed a valuable means for discovering new people to follow. []
  3. We are investigating this in ongoing experimental research. Also see Schwarz, N., Bless, H., Strack, F., Klumpp, G., Rittenauer-Schatka, H., & Simons, A. (1991). Ease of retrieval as information: Another look at the availability heuristic. Journal of Personality and Social Psychology, 61(2), 195-202. doi:10.1037/0022-3514.61.2.195 []

Persuasion profiling and genres: Fogg in 2006

Maurits Kaptein and I have recently been thinking a lot about persuasion profiling — estimating and adapting to individual differences in responses to influence strategies based on past behavior and other information. With help from students, we’ve been running experiments and building statistical models that implement persuasion profiling.

My thinking on persuasion profiling is very much in BJ Fogg’s footsteps, since he has been talking about persuasion profiling in courses, lab meetings, and personal discussions since 2004 or earlier.

Just yesterday, I came across this transcript of BJ’s presentation for an FTC hearing in 2006. I was struck at how much it anticipates some of what Maurits and I have written recently (more on this later). I’m sure I watched the draft video of the presentation back then and it’s influenced me, even if I forgot some of the details.

Here is the relevant excerpt from BJ’s comments for the FTC:

Persuasion profiling means that each one of us has a different set of persuasion strategies that affect us. Just like we like different types of food or are vulnerable to giving in to different types of food on a diet, we are vulnerable to different types of persuasion strategies.

On the food example, I love old-fashioned popcorn, and if I go to a party and somebody has old-fashioned popcorn, I will probably break down and eat it. On the persuasion side of things, I know I’m vulnerable to trying new things, to challenges and to anything that gets measured. If that’s proposed to me, I’m going to be vulnerable and I’m going to give it a shot.

Whenever we go to a Web site and use an interactive system, it is likely they will be capturing what persuasion strategies work on us and will be using those when we use the service again. The mapping out of what makes me tick, what motivates me can also be bought or sold, just like a credit report.

So imagine I’m going in to buy a new car and the person selling me the car downloads my credit report but also buys my persuasion profile. I may or may not know about this. Imagine if persuasion profiles are available on political campaigns so that when I visit a Web site, the system knows it is B.J. Fogg, and it changes [its] approach based on my vulnerabilities when it comes to persuasion.

Persuasive technology will touch our lives anywhere that we access digital products or services, in the car, in our living room, on the Web, through our mobile phones and so on. Persuasive technology will be all around us, and unlike other media types, where you have 30-second commercial or a magazine ad, you have genres you can understand, when it comes to computer-based persuasion, it is so flexible that it won’t have genre boundaries. It will come to us in the ordinary course of our lives, as we are working on a Web site, as we are editing a document, as we are driving a car. There won’t be clear markers about when you are being persuaded and when you are not.

This last paragraph is about the “genrelessness” of many persuasive technologies. This isn’t directly on the topic of persuasion profiling, but I see it as critically relevant. Persuasion profiling is likely to be most effective when invisible and undisclosed to users. From this and the lack of genre-based flags for persuasive technology it follows that we will frequently be “persuasion profiled” without knowing it.