Ready-to-hand

Dean Eckles on people, technology & inference

social software

Selecting effective means to any end

How are psychographic personalization and persuasion profiling different from more familiar forms of personalization and recommendation systems? A big difference is that they focus on selecting the “how” or the “means” of inducing you to an action — rather than selecting the “what” or the “ends”. Given the recent interest in this kind of personalization, I wanted to highlight some excerpts from something Maurits Kaptein and I wrote in 2010.1

This post excerpts our 2010 article, a version of which was published as:
Kaptein, M., & Eckles, D. (2010). Selecting effective means to any end: Futures and ethics of persuasion profiling. In International Conference on Persuasive Technology (pp. 82-93). Springer Lecture Notes in Computer Science.

For more on this topic, see these papers.

We distinguish between those adaptive persuasive technologies that adapt the particular ends they try to bring about and those that adapt their means to some end.

First, there are systems that use models of individual users to select particular ends that are instantiations of more general target behaviors. If the more general target behavior is book buying, then such a system may select which specific books to present.

Second, adaptive persuasive technologies that change their means adapt the persuasive strategy that is used — independent of the end goal. One could offer the same book and for some people show the message that the book is recommended by experts, while for others emphasizing that the book is almost out of stock. Both messages be may true, but the effect of each differs between users.

Example 2. Ends adaptation in recommender systems

Pandora is a popular music service that tries to engage music listeners and persuade them into spending more time on the site and, ultimately, subscribe. For both goals it is beneficial for Pandora if users enjoy the music that is presented to them by achieving a match between the music offering to individual, potentially latent music preferences. In doing so, Pandora adaptively selects the end — the actual song that is listened to and that could be purchased, rather than the means — the reasons presented for the selection of one specific song.

The distinction between end-adaptive persuasive technologies and means-adaptive persuasive technologies is important to discuss since adaptation in the latter case could be domain independent. In end adaptation, we can expect that little of the knowledge of the user that is gained by the system can be used in other domains (e.g. book preferences are likely minimally related to optimally specifying goals in a mobile exercise coach). Means adaptation is potentially quite the opposite. If an agent expects that a person is more responsive to authority claims than to other influence strategies in one domain, it may well be that authority claims are also more effective for that user than other strategies in a different domain. While we focus on novel means-adaptive systems, it is actually quite common for human influence agents adaptively select their means.

Influence Strategies and Implementations

Means-adaptive systems select different means by which to bring about some attitude or behavior change. The distinction between adapting means and ends is an abstract and heuristic one, so it will be helpful to describe one particular way to think about means in persuasive technologies. One way to individuate means of attitude and behavior change is to identify distinct influence strategies, each of which can have many implementations. Investigators studying persuasion and compliance-gaining have varied in how they individuate influence strategies: Cialdini [5] elaborates on six strategies at length, Fogg [8] describes 40 strategies under a more general definition of persuasion, and others have listed over 100 [16].

Despite this variation in their individuation, influence strategies are a useful level of analysis that helps to group and distinguish specific influence tactics. In the context of means adaptation, human and computer persuaders can select influence strategies they expect to be more effective that other influence strategies. In particular, the effectiveness of a strategy can vary with attitude and behavior change goals. Different influence strategies are most effective in different stages of the attitude to behavior continuum [1]. These range from use of heuristics in the attitude stage to use of conditioning when a behavioral change has been established and needs to be maintained [11]. Fogg [10] further illustrates this complexity and the importance of considering variation in target behaviors by presenting a two-dimensional matrix of 35 classes behavior change that vary by (1) the schedule of change (e.g., one time, on cue) and (2) the type of change (e.g., perform new behavior vs. familiar behavior). So even for persuasive technologies that do not adapt to individuals, selecting an influence strategy — the means — is important. We additionally contend that influence strategies are also a useful way to represent individual differences [9] — differences which may be large enough that strategies that are effective on average have negative effects for some people.

Example 4. Backfiring of influence strategies

John just subscribed to a digital workout coaching service. This system measures his activity using an accelerometer and provides John feedback through a Web site. This feedback is accompanied by recommendations from a general practitioner to modify his workout regime. John has all through his life been known as authority averse and dislikes the top-down recommendation style used. After three weeks using the service, John’s exercise levels have decreased.

Persuasion Profiles

When systems represent individual differences as variation in responses to influence strategies — and adapt to these differences, they are engaging in persuasion profiling. Persuasion profiles are thus collections of expected effects of different influence strategies for a specific individual. Hence, an individual’s persuasion profile indicates which influence strategies — one way of individuating means of attitude and behavior change — are expected to be most effective.

Persuasion profiles can be based on demographic, personality, and behavioral data. Relying primarily on behavioral data has recently become a realistic option for interactive technologies, since vast amounts of data about individuals’ behavior in response to attempts at persuasion are currently collected. These data describe how people have responded to presentations of certain products (e.g. e-commerce) or have complied to requests by persuasive technologies (e.g. the DirectLife Activity Monitor [12]).

Existing systems record responses to particular messages — implementations of one or more influence strategies — to aid profiling. For example, Rapleaf uses responses by a users’ friends to particular advertisements to select the message to present to that user [2]. If influence attempts are identified as being implementations of particular strategies, then such systems can “borrow strength” in predicting responses to other implementations of the same strategy or related strategies. Many of these scenarios also involve the collection of personally identifiable information, so persuasion profiles can be associated with individuals across different sessions and services.

Consequences of Means Adaptation

In the remainder of this paper we will focus on the implications of the usage of persuasion profiles in means-adaptive persuasive systems. There are two properties of these systems which make this discussion important:

1. End-independence: Contrary to profiles used by end-adaptive persuasive sys- tems the knowledge gained about people in means-adaptive systems can be used independent from the end goal. Hence, persuasion profiles can be used independent of context and can be exchanged between systems.

2. Undisclosed: While the adaptation in end-adaptive persuasive systems is often most effective when disclosed to the user, this is not necessarily the case in means-adaptive persuasive systems powered by persuasion profiles. Selecting a different influence strategy is likely less salient than changing a target behavior and thus will often not be noticed by users.

Although through the previous examples and the discussion of adaptive persuasive systems these two notions have already been hinted upon, we feel it is important to examine each in more detail.

End-Independence

Means-adaptive persuasive technologies are distinctive in their end-independence: a persuasion profile created in one context can be applied to bringing about other ends in that same context or to behavior or attitude change in a quite different context. This feature of persuasion profiling is best illustrated by contrast with end adaptation.

Any adaptation that selects the particular end (or goal) of a persuasive attempt is inherently context-specific. Though there may be associations between individual differences across context (e.g., between book preferences and political attitudes) these associations are themselves specific to pairs of contexts. On the other hand, persuasion profiles are designed and expected to be independent of particular ends and contexts. For example, we propose that a person’s tendency to comply more to appeals by experts than to those by friends is present both when looking at compliance to a medical regime as well as purchase decisions.

It is important to clarify exactly what is required for end-independence to obtain. If we say that a persuasion profile is end-independent than this does not imply that the effectiveness of influence strategies is constant across all contexts. Consistent with the results reviewed in section 3, we acknowledge that influence strategy effectiveness depends on, e.g., the type of behavior change. That is, we expect that the most effective influence strategy for a system to employ, even given the user’s persuasion profile, would depend on both context and target behavior. Instead, end-independence requires that the difference between the average effect of a strategy for the population and the effect of that strategy for a specific individual is relatively consistent across contexts and ends.

Implications of end-independence.

From end-independence, it follows that persuasion profiles could potentially be created by, and shared with, a number of systems that use and modify these profiles. For example, the profile constructed from observing a user’s online shopping behavior can be of use in increasing compliance in saving energy. Behavioral measures in latter two contexts can contribute to refining the existing profile.2

Not only could persuasion profiles be used across contexts within a single organization, but there is the option of exchanging the persuasion profiles between corporations, governments, other institutions, and individuals. A market for persuasion profiles could develop [9], as currently exists for other data about consumers. Even if a system that implements persuasion profiling does so ethically, once constructed the profiles can be used for ends not anticipated by its designers.

Persuasion profiles are another kind of information about individuals collected by corporations that individuals may or have effective access to. This raises issues of data ownership. Do individuals have access to their complete persuasion profiles or other indicators of the contents of the profiles? Are individuals compensated for this valuable information [14]? If an individual wants to use Amazon’s persuasion profile to jump-start a mobile exercise coach’s adaptation, there may or may not be technical and/or legal mechanisms to obtain and transfer this profile.

Non-disclosure

Means-adaptive persuasive systems are able and likely to not disclose that they are adapting to individuals. This can be contrasted with end adaptation, in which it is often advantageous for the agent to disclose the adaption and potentially easy to detect. For example, when Amazon recommends books for an individual it makes clear that these are personalized recommendations — thus benefiting from effects of apparent personalization and enabling presenting reasons why these books were recommended. In contrast, with means adaptation, not only may the results of the adaptation be less visible to users (e.g. emphasizing either “Pulitzer Prize winning” or “International bestseller”), but disclosure of the adaptation may reduce the target attitude or behavior change.

It is hypothesized that the effectiveness of social influence strategies is, at least partly, caused by automatic processes. According to dual-process models [4], un- der low elaboration message variables manipulated in the selection of influence strategies lead to compliance without much thought. These dual-process models distinguish between central (or systematic) processing, which is characterized by elaboration on and consideration of the merits of presented arguments, and pe- ripheral (or heuristic) processing, which is characterized by responses to cues as- sociated with, but peripheral to the central arguments of, the advocacy through the application of simple, cognitively “cheap”, but fallible rules [13]. Disclosure of means adaptation may increase elaboration on the implementations of the selected influence strategies, decreasing their effectiveness if they operate primarily via heuristic processing. More generally, disclosure of means adaptation is a disclosure of persuasive intent, which can increase elaboration and resistance to persuasion.

Implications of non-disclosure. The fact that persuasion profiles can be obtained and used without disclosing this to users is potentially a cause for concern. Potential reductions in effectiveness upon disclosure incentivize system designs to avoid disclosure of means adaptation.

Non-disclosure of means adaptation may have additional implications when combined with value being placed on the construction of an accurate persuasion profile. This requires some explanation. A simple system engaged in persuasion profiling could select influence strategies and implementations based on which is estimated to have the largest effect in the present case; the model would thus be engaged in passive learning. However, we anticipate that systems will take a more complex approach, employing active learning techniques [e.g., 6]. In active learning the actions selected by the system (e.g., the selection of the influence strategy and its implementation) are chosen not only based on the value of any resulting attitude or behavior change but including the value predicted improvements to the model resulting from observing the individual’s response. Increased precision, generality, or comprehensiveness of a persuasion profile may be valued (a) because the profile will be more effective in the present context or (b) because a more precise profile would be more effective in another context or more valuable in a market for persuasion profiles.

These later cases involve systems taking actions that are estimated to be non-optimal for their apparent goals. For example, a mobile exercise coach could present a message that is not estimated to be the most effective in increasing overall activity level in order to build a more precise, general, or comprehensive persuasion profile. Users of such a system might reasonably expect that it is designed to be effective in coaching them, but it is in fact also selecting actions for other reasons, e.g., selling precise, general, and comprehensive persuasion profiles is part of the company’s business plan. That is, if a system is designed to value constructing a persuasion profile, its behavior may differ substantially from its anticipated core behavior.

[1] Aarts, E.H.L., Markopoulos, P., Ruyter, B.E.R.: The persuasiveness of ambient intelligence. In: Petkovic, M., Jonker, W. (eds.) Security, Privacy and Trust in Modern Data Management. Springer, Heidelberg (2007)

[2] Baker, S.: Learning, and profiting, from online friendships. BusinessWeek 9(22) (May 2009)Selecting Effective Means to Any End 93

[3] Berdichevsky, D., Neunschwander, E.: Toward an ethics of persuasive technology. Commun. ACM 42(5), 51–58 (1999)

[4] Cacioppo, J.T., Petty, R.E., Kao, C.F., Rodriguez, R.: Central and peripheral routes to persuasion: An individual difference perspective. Journal of Personality and Social Psychology 51(5), 1032–1043 (1986)

[5] Cialdini, R.: Influence: Science and Practice. Allyn & Bacon, Boston (2001)

[6] Cohn,D.A., Ghahramani,Z.,Jordan,M.I.:Active learning with statistical models. Journal of Artificial Intelligence Research 4, 129–145 (1996)

[7] Eckles, D.: Redefining persuasion for a mobile world. In: Fogg, B.J., Eckles, D. (eds.) Mobile Persuasion: 20 Perspectives on the Future of Behavior Change. Stanford Captology Media, Stanford (2007)

[8] Fogg, B.J.: Persuasive Technology: Using Computers to Change What We Think and Do. Morgan Kaufmann, San Francisco (2002)

[9] Fogg, B.J.: Protecting consumers in the next tech-ade, U.S. Federal Trade Commission hearing (November 2006), http://www.ftc.gov/bcp/workshops/techade/pdfs/transcript_061107.pdf

[10] Fogg,B.J.:The behavior grid: 35 ways behavior can change. In: Proc. of Persuasive Technology 2009, p. 42. ACM, New York (2009)

[11] Kaptein, M., Aarts, E.H.L., Ruyter, B.E.R., Markopoulos, P.: Persuasion in am- bient intelligence. Journal of Ambient Intelligence and Humanized Computing 1, 43–56 (2009)

[12] Lacroix, J., Saini, P., Goris, A.: Understanding user cognitions to guide the tai- loring of persuasive technology-based physical activity interventions. In: Proc. of Persuasive Technology 2009, vol. 350, p. 9. ACM, New York (2009)

[13] Petty, R.E., Wegener, D.T.: The elaboration likelihood model: Current status and controversies. In: Chaiken, S., Trope, Y. (eds.) Dual-process theories in social psychology, pp. 41–72. Guilford Press, New York (1999)

[14] Prabhaker, P.R.: Who owns the online consumer? Journal of Consumer Market- ing 17, 158–171 (2000)

[15] Rawls, J.: The independence of moral theory. In: Proceedings and Addresses of the American Philosophical Association, vol. 48, pp. 5–22 (1974)

[16] Rhoads, K.: How many influence, persuasion, compliance tactics & strategies are there? (2007), http://www.workingpsychology.com/numbertactics.html

[17] Schafer, J.B., Konstan, J.A., Riedl, J.: E-commerce recommendation applications. Data Mining and Knowledge Discovery 5(1/2), 115–153 (2001)

  1. We were of course influenced by B.J. Fogg’s previous use of the term ‘persuasion profiling’, including in his comments to the Federal Trade Commission in 2006. []
  2. This point can also be made in the language of interaction effects in analysis of variance: Persuasion profiles are estimates of person–strategy interaction effects. Thus, the end-independence of persuasion profiles requires not that the two-way strategy– context interaction effect is small, but that the three-way person–strategy–context interaction is small. []

Will the desire for other perspectives trump the “friendly world syndrome”?

Some recent journalism at NPR and The New York Times has addressed some aspects of the “friendly world syndrome” created by personalized media. A theme common to both pieces is that people want to encounter different perspectives and will use available resources to do so. I’m a bit more skeptical.

Here’s Natasha Singer at The New York Times on cascades of memes, idioms, and links through online social networks (e.g., Twitter):

If we keep seeing the same links and catchphrases ricocheting around our social networks, it might mean we are being exposed only to what we want to hear, says Damon Centola, an assistant professor of economic sociology at the Massachusetts Institute of Technology.

“You might say to yourself: ‘I am in a group where I am not getting any views other than the ones I agree with. I’m curious to know what else is out there,’” Professor Centola says.

Consider a new hashtag: diversity.

This is how Singer ends this article in which the central example is “icantdateyou” leading Egypt-related idioms as a trending topic on Twitter. The suggestion here, by Centola and Singer, is that people will notice they are getting a biased perspective of how many people agree with them and what topics people care about — and then will take action to get other perspectives.

Why am I skeptical?

First, I doubt that we really realize the extent to which media — and personalized social media in particular — bias their perception of the frequency of beliefs and events. Even though people know that fiction TV programs (e.g., cop shows) don’t aim to represent reality, heavy TV watchers (on average) substantially overestimate the percent of adult men employed in law enforcement.1 That is, the processes that produce the “friendly world syndrome” function without conscious awareness and, perhaps, even despite it. So people can’t consciously choose to seek out diverse perspectives if they don’t know they are increasingly missing them.

Second, I doubt that people actually want diversity of perspectives all that much. Even if I realize divergent views are missing from my media experience, why would I seek them out? This might be desirable for some people (but not all), and even for those, the desire to encounter people who radically disagree has its limits.

Similar ideas pop up in a NPR All Things Considered segment by Laura Sydell. This short piece (audio, transcript) is part of NPR’s “Cultural Fragmentation” series.2 The segment begins with the worry that offline bubbles are replicated online and quotes me describing how attempts to filter for personal relevance also heighten the bias towards agreement in personalized media.

But much of the piece has actually focuses on how one person — Kyra Gaunt, a professor and musician — is using Twitter to connect and converse with new and different people. Gaunt describes her experience on Twitter as featuring debate, engagement, and “learning about black people even if you’ve never seen one before”. Sydell’s commentary identifies the public nature of Twitter as an important factor in facilitating experiencing diverse perspectives:

But, even though there is a lot of conversation going on among African Americans on Twitter, Professor Gaunt says it’s very different from the closed nature of Facebook because tweets are public.

I think this is true to some degree: much of the content produced by Facebook users is indeed public, but Facebook does not make it as easily searchable or discoverable (e.g., through trending topics). But more importantly, Facebook and Twitter differ in their affordances for conversation. Facebook ties responses to the original post, which means both that the original poster controls who can reply and that everyone who replies is part of the same conversation. Twitter supports replies through the @reply mechanism, so that anyone can reply but the conversation is fragmented, as repliers and consumers often do not see all replies. So, as I’ve described, even if you follow a few people you disagree with on Twitter, you’ll most likely see replies from the other people you follow, who — more often than not — you agree with.

Gaunt’s experience with Twitter is certainly not typical. She has over 3,300 followers and follows over 2,400, so many of her posts will generate replies from people she doesn’t know well but whose replies will appear in her main feed. And — if she looks beyond her main feed to the @Mentions page — she will see the replies from even those she does not follow herself. On the other hand, her followers will likely only see her posts and replies from others they follow.3

Nonetheless, Gaunt’s case is worth considering further, as does Sydell:

SYDELL: Gaunt says she’s made new friends through Twitter.

GAUNT: I’m meeting strangers. I met with two people I had engaged with through Twitter in the past 10 days who I’d never met in real time, in what we say in IRL, in real life. And I met them, and I felt like this is my tribe.

SYDELL: And Gaunt says they weren’t black. But the key word for some observers is tribe. Although there are people like Gaunt who are using social media to reach out, some observers are concerned that she is the exception to the rule, that most of us will be content to stay within our race, class, ethnicity, family or political party.

So Professor Gaunt is likely making connections with people she would not have otherwise. But — it is at least tempting to conclude from “this is my tribe” — they are not people with radically different beliefs and values, even if they have arrived at those beliefs and values from a membership in a different race or class.

  1. Gerbner, G., Gross, L., Morgan, M., & Signorielli, N. (1980). The “Mainstreaming” of America: Violence Profile No. 11. Journal of Communication, 30(3), 10-29. []
  2. I was also interviewed for the NPR segment. []
  3. One nice feature in “new Twitter” — the recently refresh of the Twitter user interface — is that clicking on a tweet will show some of the replies to it in the right column. This may offer an easier way for followers to discover diverse replies to the people they follow. But it is also not particularly usable, as it is often difficult to even trace what a reply is a reply to. []

The “friendly world syndrome” induced by simple filtering rules

I’ve written previously about how filtered activity streams [edit: i.e. news feeds] can lead to biased views of behaviors in our social neighborhoods. Recent conversations with two people writing popular-press books on related topics have helped me clarify these ideas. Here I reprise previous comments on filtered activity streams, aiming to highlight how they apply even in the case of simple and transparent personalization rules, such as those used by Twitter.

Birds of a feather flock together. Once flying together, a flock is also subject to the same causes (e.g., storms, pests, prey). Our friends, family, neighbors, and colleagues are more similar to us for similar reasons (and others). So we should have no illusions that the behaviors, attitudes, outcomes, and beliefs of our social neighborhood are good indicators of those of other populations — like U.S. adults, Internet users, or homo sapiens of the past, present, or future. The apocryphal Pauline Kael quote “How could Nixon win? No one I know voted for him” suggests both the ease and error of this kind of inference. I take it as a given that people’s estimates of larger populations’ behaviors and beliefs are often biased in the direction of the behaviors and beliefs in their social neighborhoods. This is the case with and without “social media” and filtered activity streams — and even mediated communication in general.

That is, even without media, our personal experiences are not “representative” of the American experience, human experience, etc., but we do (and must) rely on it anyway. One simple cognitive tool here is using “ease of retrieval” to estimate how common or likely some event is: we can estimate how common something is based on how easy it is to think of. So if something prompts someone to consider how common a type of event is, they will (on average) estimate the event as more common if it is more easy to think of an example of the event, imagine the event, etc. And our personal experiences provide these examples and determine how easy they are to bring to mind. Both prompts and immediately prior experience can thus affect these frequency judgments via ease of retrieval effects.

Now this is not to say that we should think as ease of retrieval heuristics as biases per se. Large classes and frequent occurrences are often more available to mind than those that are smaller or less frequent. It is just that this is also often not the case, especially when there is great diversity in frequency among physical and social neighborhoods. But certainly we can see some cases where these heuristics fail.

Media are powerful sources of experiences that can make availability and actual frequency diverge, whether by increasing the biases in the direction of projecting our social neighborhoods onto larger population or in other, perhaps unexpected directions. In a classic and controversial line of research in the 1970s and 80s, Gerbner and colleagues argued that increased television-watching produces a “mean world syndrome” such that watching more TV causes people to increasingly overestimate, e.g., the fraction of adult U.S. men employed in law enforcement and the probability of being a victim of violent crime. Their work did not focus on investigating heuristics producing these effects, but others have suggested the availability heuristic (and related ease of retrieval effects) as at work. So even if my social neighborhood has fewer cops or victims of violent crime than the national average, media consumption and the availability heuristic can lead me to overestimate both.

Personalized and filtered activity streams certainly also affect us through some of the same psychological processes, leading to biases in users’ estimates of population-wide frequencies. They can aIso bias inference about our own social neighborhoods. If I try to estimate how likely a Facebook status update by a friend is to receive a comment, this estimate will be affected by the status updates I have seen recently. And if content with comments is more likely to be shown to me in my personalized filtered activity stream (a simple rule for selecting more interesting content, when there is too much for me to consume it all), then it will be easier for me to think of cases in which status updates by my friends do receive comments.

In my previous posts on these ideas, I have mainly focused on effects on beliefs about my social neighborhood and specifically behaviors and outcomes specific to the service providing the activity stream (e.g., receiving comments). But similar effects apply for beliefs about other behaviors, opinions, and outcomes. In particular, filtered activity streams can increase the sense that my social neighborhood (and perhaps the world) agrees with me. Say that content produced by my Facebook friends with comments and interaction from mutual friends is more likely to be shown in my filtered activity streams. Also assume that people are more likely to express their agreement in such a way than substantial disagreement. As long as I am likely to agree with most of my friends, then this simple rule for filtering produces an activity stream with content I agree with more than an unfiltered stream would. Thus, even if I have a substantial minority of friends with whom I disagree on politics, this filtering rule would likely make me see less of their content, since it is less likely to receive (approving) comments from mutual friends.

I’ve been casually calling this larger family of effects this the “friendly world syndrome” induced by filtered activity streams. Like the mean world syndrome of the television cultivation research described above, this picks out a family of unintentional effects of media. Unlike the mean world syndrome, the friendly world syndrome includes such results as overestimating how many friends I have in common with my friends, how much positive and accomplishment-reporting content my friends produce, and (as described) how much I agree with my friends.1

Even though the filtering rules I’ve described so far are quite simple and appealing, they still are more consistent with versions of activity streams that are filtered by fancy relevance models, which are often quite opaque to users. Facebook News Feed — and “Top News” in particular — is the standard example here. On the other hand, one might think that these arguments do not apply to Twitter, which does not apply any kind of machine learning model estimating relevance to filtering users’ streams. But Twitter actually does implement a filtering rule with important similarities to the “comments from mutual friends” rule described above. Twitter only shows “@replies” to a user on their home page when that user is following both the poster of the reply and the person being replied to.2 This rule makes a lot of sense, as a reply is often quite difficult to understand without the original tweet. Thus, I am much more likely to see people I follow replying to people I follow than to others (since the latter replies are encountered only from browsing away from the home page. I think this illustrates how even a straightforward, transparent rule for filtering content can magnify false consensus effects.

One aim in writing this is to clarify that a move from filtering activity streams using opaque machine learning models of relevance to filtering them with simple, transparent, user-configurable rules will likely be insufficient to prevent the friendly world syndrome. This change might have many positive effects and even reduce some of these effects by making people mindful of the filtering.3 But I don’t think these effects are so easily avoided in any media environment that includes sensible personalization for increased relevance and engagement.

  1. This might suggest that some of the false consensus effects observed in recent work using data collected about Facebook friends could be endogenous to Facebook. See Goel, S., Mason, W., & Watts, D. J. (2010). Real and perceived attitude agreement in social networks. Journal of Personality and Social Psychology, 99(4), 611-621. doi:10.1037/a0020697 []
  2. Twitter offers the option to see all @replies written by people one is following, but 98% of users use the default option. Some users were unhappy with an earlier temporary removal of this feature. My sense is that the biggest complaint was that removing this feature removed a valuable means for discovering new people to follow. []
  3. We are investigating this in ongoing experimental research. Also see Schwarz, N., Bless, H., Strack, F., Klumpp, G., Rittenauer-Schatka, H., & Simons, A. (1991). Ease of retrieval as information: Another look at the availability heuristic. Journal of Personality and Social Psychology, 61(2), 195-202. doi:10.1037/0022-3514.61.2.195 []

Aardvark’s use of Wizard of Oz prototyping to design their social interfaces

The Wall Street Journal’s Venture Capital Dispatch reports on how Aardvark, the social question asking and answering service recently acquired by Google, used a Wizard of Oz prototype to learn about how their service concept would work without building all the tech before knowing if it was any good.

Aardvark employees would get the questions from beta test users and route them to users who were online and would have the answer to the question. This was done to test out the concept before the company spent the time and money to build it, said Damon Horowitz, co-founder of Aardvark, who spoke at Startup Lessons Learned, a conference in San Francisco on Friday.

“If people like this in super crappy form, then this is worth building, because they’ll like it even more,” Horowitz said of their initial idea.

At the same time it was testing a “fake” product powered by humans, the company started building the automated product to replace humans. While it used humans “behind the curtain,” it gained the benefit of learning from all the questions, including how to route the questions and the entire process with users.

This is a really good idea, as I’ve argued before on this blog and in a chapter for developers of mobile health interventions. What better way to (a) learn about how people will use and experience your service and (b) get training data for your machine learning system than to have humans-in-the-loop run the service?

My friend Chris Streeter wondered whether this was all done by Aardvark employees or whether workers on Amazon Mechanical Turk may have also been involved, especially in identifying the expertise of the early users of the service so that the employees could route the questions to the right place. I think this highlights how different parts of a service can draw on human and non-human intelligence in a variety of ways — via a micro-labor market, using skilled employees who will gain hands-on experience with customers, etc.

I also wonder what UIs the humans-in-the-loop used to accomplish this. It’d be great to get a peak. I’d expect that these were certainly rough around the edges, as was the Aardvark customer-facing UI.

Aardvark does a good job of being a quite sociable agent (e.g., when using it via instant messaging) that also gets out of the way of the human–human interaction between question askers and answers. I wonder how the language used by humans to coordinate and hand-off questions may have played into creating a positive para-social interaction with vark.

Using social networks for persuasion profiling

BusinessWeek has an exhuberant review of current industry research and product development related to understanding social networks using data from social network sites and other online communication such as email. It includes snippets from people doing very interesting social science research, like Duncan Watts, Cameron Marlow, and danah boyd. So it is worth checking out, even if you’re already familiar with the Facebook Data Team’s recent public reports (“Maintained Relationships”, “Gesundheit!”).

But I actually want to comment not on their comments, but on this section:

In an industry where the majority of ads go unclicked, even a small boost can make a big difference. One San Francisco advertising company, Rapleaf, carried out a friend-based campaign for a credit-card company that wanted to sell bank products to existing customers. Tailoring offers based on friends’ responses helped lift the average click rate from 0.9% to 2.7%. Although 97.3% of the people surfed past the ads, the click rate still tripled.

Rapleaf, which has harvested data from blogs, online forums, and social networks, says it follows the network behavior of 480 million people. It furnishes friendship data to help customers fine-tune their promotions. Its studies indicate borrowers are a better bet if their friends have higher credit ratings. This might mean a home buyer with a middling credit risk score of 550 should be treated as closer to 600 if most of his or her friends are in that range, says Rapleaf CEO Auren Hoffman.

The idea is that since you are more likely to behave like your friends, their behavior can be used to profile you and tailor some marketing to be more likely to result in compliance.

In the Persuasive Technology Lab at Stanford University, BJ Fogg has long emphasized how powerful and worrying personalization based on this kind of “persuasion profile” can be. Imagine that rather than just personalizing screens based on the books you are expected to like (a familiar idea), Amazon selects the kinds of influence strategies used based on a representation of what strategies work best against you: “Dean is a sucker for limited-time offers”, “Foot-in-the-door works really well against Domenico, especially when he is buying a gift.”

In 2006 two of our students, Fred Leach and Schuyler Kaye, created this goofy video illustrating approximately this concept:

My sense is that this kind of personalization is in wide use at places like Amazon, except that their “units of analysis/personalization” are individual tactics (e.g., Gold Box offers), rather than the social influence strategies that can be implemented in many ways and in combination with each other.

What’s interesting about the Rapleaf work described by BusinessWeek is that this enables persuasion profiling even before a service provider or marketer knows anything about you — except that you were referred by or are otherwise connected to a person. This gives them the ability to estimate your persuasion profile by using your social neighborhood, even if you haven’t disclosed this information about your social network.

While there has been some research on individual differences in responses to influence strategies (including when used by computers), as far as I know there isn’t much work on just how much the responses of friends covary. As a tool for influencers online, it doesn’t matter as much whether this variation explained by friends’ responses is also explained by other variables, as long as those variables aren’t available for the influencers to collect. But for us social scientists, it would be interesting to understand the mechanism by which there is this relationship: is it just that friends are likely to be similar in a bunch of ways and these predict our “persuasion profiles”, or are the processes of relationship creation that directly involve these similarities.

This is an exciting and scary direction, and I want to learn more about it.

Scroll to top